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Introduction to Rn

Calculus is the study of functional relationships and how related quantities change with
each other. In your first exposure to calculus, the primary focus of your attention was
on functions involving a single independent variable and a single dependent variable. For
such a function f , a single real number input x determines a unique single output value
f(x). However, many of the functions of importance both within mathematics itself as
well as in the application of mathematics to the rest of the world involve many variables
simultaneously. For example, frequently in physics the function which describes the force
acting on an object moving in space depends on three variables, the three coordinates
which describe the location of the object. If the force function also varies with time,
then the force depends on four variables. Moreover, the output of the force function will
itself involve three variables, the three coordinate components of the force. Hence the
force function is such that it takes three, or four, variables for input and outputs three
variables. Far more complicated functions are easy to imagine: the gross national product
of a country is a function of thousands of variables with a single variable as output, an
airline schedule is a function with thousands of inputs (cities, planes, and people to be
scheduled, as well as other variables like fuel costs and the schedules of competing airlines)
and perhaps hundreds of outputs (the particular routes flown, along with their times).
Although such functions may at first appear to be far more difficult to work with than
the functions of single variable calculus, we shall see that we will often be able to reduce
problems involving functions of several variables to related problems involving only single
variable functions, problems which we may then handle using already familiar techniques.

By definition, a function takes a single input value and associates it with a single
output value. Hence, even though in this book the inputs to our functions will often
involve several variables, as will the outputs, we will nevertheless want to regard the input
and output of a function as single points in some multidimensional space. This is natural
in the case of, for example, the force function described above, where the input is a point
in three dimensional space, four if we need to use time, but requires some mathematical
abstraction if we want to consider the input to the gross national product function as a
point in some space of many thousands of dimensions. Because even the geometry of two-
and three-dimensional space may be in some respects new to you, we will use this chapter
to study the geometry of multidimensional space before proceeding to the study of calculus
proper in Chapter 2.

Throughout the book we will let R denote the set of real numbers.

Definition By n-dimensional Euclidean space we mean the set

Rn = {(x1, x2, . . . , xn) : xi ∈ R, i = 1, 2, . . . , n}. (1.1.1)
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Figure 1.1.1 A point in R3

That is, Rn is the space of all ordered n-tuples of real numbers. We will denote a point in
this space by

x = (x1, x2, . . . , xn), (1.1.2)

and, for i = 1, 2, . . . , n, we call xi the ith coordinate of x.

Example When n = 2, we have

R2 = {(x1, x2) : x1, x2 ∈ R},

which is our familiar representation for points in the Cartesian plane. As usual, we will
in this case frequently label the coordinates as x and y, or something similar, instead of
numbering them as x1 and x2.

Example When n = 3, we have

R3 = {(x1, x2, x3) : x1, x2, x3 ∈ R}.

Just as we can think of R2 as a way of assigning coordinates to points in the Euclidean
plane, we can think of R3 as assigning coordinates to three-dimensional Euclidean space. To
picture this space, we must imagine three mutually perpendicular axes with the coordinates
marked off along the axes as in Figure 1.1.1. Again, we will frequently label the coordinates
of a point in R3 as, for example, x, y, and z, or u, v, and w, rather than using numbered
coordinates.

Example If an object moves through space, its location may be specified with four
coordinates, three spatial coordinate, say, x, y, and z, and one time coordinate, say t.
Thus its location is specified by a point p = (x, y, z, t) in R4. Of course, we cannot draw
a picture of such a point.

Before beginning our geometric study of Rn, we first need a few basic algebraic defini-
tions.
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Definition Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be points in Rn and let a
be a real number. Then we define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn), (1.1.3)

x− y = (x1 − y1, x2 − y2, . . . , xn − yn), (1.1.4)

and
ax = (ax1, ax2, . . . , axn). (1.1.5)

Example If x = (2,−3, 1) and y = (−4, 1,−2) are two points in R3, then

x + y = (−2,−2,−1),

x− y = (6,−4, 3),

y − x = (−6, 4,−3),

3x = (6,−9, 3),

and
−2y = (8,−2, 4).

Notice that we defined addition and subtraction for points in Rn, but we did not define
multiplication. In general there is no form of multiplication for such points that is useful
for our purpose. Of course, multiplication is defined in the special case n = 1 and for the
special case n = 2 if we consider the points in R2 as points in the complex plane. We
shall see in Section 1.3 that there is also an interesting and useful type of multiplication
in R3. Also note that (1.1.5) does provide a method for multiplying a point in Rn by a
a real number, the result being another point in Rn. In such cases we often refer to the
real number as a scalar and this multiplication as scalar multiplication. We shall provide
a geometric interpretation of this form of multiplication shortly.

Geometry of Rn

Recall that if x = (x1, x2) and y = (y1, y2) are two points in R2, then, using the
Pythagorean theorem, the distance from x to y is

√
(y1 − x1)2 + (y2 − x2)2. (1.1.6)

This formula is easily generalized to R3: Suppose x = (x1, x2, x3) and y = (y1, y2, y3) are
two points in R3. Let z = (y1, y2, x3). Since the first two coordinates of y and z are the
same, y and z lie on the same vertical line, and so the distance between them is simply

|y3 − x3|. (1.1.7)

Moreover, x and z have the same third coordinate, and so lie in the same horizontal plane.
Hence the distance between x and z is the same as the distance between (x1, x2) and
(y1, y2) in R2, that is, √

(y1 − x1)2 + (y2 − x2)2. (1.1.8)
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Figure 1.1.2 Distance from x = (x1, x2, x3) and y = (y1, y2, y3)

Finally, the points x, y, and z form a right triangle with right angle at z. Hence, using
the Pythagorean theorem again, the distance from x to y is

√(√
(y1 − x1)2 + (y2 − x2)2

)2
+ |y3 − x3|2 =

√
(y1 − x1)2 + (y2 − x2)2 + (y3 − x3)2.

In particular, if we let ‖x‖ denote the distance from x = (x1, x2, x3) to the origin (0, 0, 0)
in R3, then

‖x‖ =
√
x21 + x22 + x23. (1.1.9)

With this notation, the distance from x to y is

‖y − x‖ = ‖(y1 − x1, y2 − x2, y3 − x3)‖
=
√

(y1 − x1)2 + (y2 − x2)2 + (y3 − x3)2.
(1.1.10)

Example If x = (1, 2,−3) and y = (3,−2, 1), then the distance from x to the origin is

‖x‖ =
√

12 + 22 + (−3)2 =
√

14

and the distance from x to y is given by

‖y − x‖ = ‖(2,−4, 4)‖ =
√

4 + 16 + 16 = 6.

Although we do not have any physical analogies to work with when n > 3, nevertheless
we may generalize (1.1.9) in order to define distance in Rn.

Definition If x = (x1, x2, . . . , xn) is a point in Rn, we define the norm of x, denoted
‖x‖, by

‖x‖ =
√
x21 + x22 + · · ·+ x2n. (1.1.11)

For two points x and y in Rn, we define the distance between x and y, denoted d(x,y),
by

d(x,y) = ‖y − x‖. (1.1.12)
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We will let 0 = (0, 0, . . . , 0) denote the origin in Rn. Then we have

‖x‖ = d(x,0);

that is, the norm of x is the distance from x to the origin.

Example If x = (2, 3,−1, 5), a point in R4, then the distance from x to the origin is

‖x‖ =
√

4 + 9 + 1 + 25 =
√

39.

If y = (3, 2, 1, 4), then the distance from x to y is

d(x,y) = ‖y − x‖ = ‖(1,−1, 2,−1)‖ =
√

7.

Note that if x = (x1, x2, . . . , xn) is a point in Rn and a is a scalar, then

‖ax‖ = ‖(ax1, ax2, . . . , axn)‖

=
√
a2x21 + a2x22 + · · ·+ x2n

= |a|
√
x21 + x22 + · · ·+ x2n

= |a|‖x‖. (1.1.13)

That is, the norm of a scalar multiple of x is just the absolute value of the scalar times
the norm of x. In particular, if x 6= 0, then

∥∥∥∥
1

‖x‖ x

∥∥∥∥ =
1

‖x‖‖x‖ = 1.

That is,
1

‖x‖ x

is a unit distance from the origin.

Definition Let p = (p1, p2, . . . , pn) be a point in Rn and let r > 0 be a real number.
The set of all points (x1, x2, . . . , xn) in Rn which satisfy the equation

(x1 − p1)2 + (x2 − p2)2 + · · ·+ (xn − pn)2 = r2 (1.1.14)

is called an (n − 1)-dimensional sphere with radius r and center p, which we denote
Sn−1(p, r). The set of all points (x1, x2, . . . , xn) in Rn which satisfy the inequality

(x1 − p1)2 + (x2 − p2)2 + · · ·+ (xn − pn)2 < r2 (1.1.15)

is called an open n-dimensional ball with radius r and center p, which we denote Bn(p, r).
The set of all points (x1, x2, . . . , xn) in Rn which satisfy the inequality

(x1 − p1)2 + (x2 − p2)2 + · · ·+ (xn − pn)2 ≤ r2 (1.1.16)

is called a closed n-dimensional ball with radius r and center p, which we denote B̄n(p, r).
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Figure 1.1.3 A closed ball in R2

A sphere Sn−1(p, r) is the set of all points which lie a fixed distance r from a fixed
point p in Rn. Note that for n = 1, S0(p, r) consists of only two points, namely, the point
p− r that lies a distance r to the left of p and the point p + r that lies a distance r to the
right of p; B1(p, r) is the open interval (p − r,p + r); and B̄1(p, r) is the closed interval
[p − r,p + r]. In this sense open and closed balls are natural analogs of open and closed
intervals on the real line. For n = 2, a sphere is a circle, an open ball is a disk without its
enclosing circle, and a closed ball is a disk along with its enclosing circle.

Vectors

Many of the quantities of interest in physics, such as velocities, accelerations, and forces,
involve both a magnitude and a direction. For example, we might speak of a force of
magnitude 10 newtons acting on an object at the origin in a plane at an angle of π

4 with
the horizontal. It is common to picture such a quantity as an arrow, with length given by
the magnitude and with the tip pointing in the specified direction, and to refer to it as a
vector. Now any point x = (x1, x2), x 6= 0, in R2 specifies a vector in the plane, namely
the vector starting at the origin and ending at x. The magnitude, or length, of such a
vector is ‖x‖ and its direction is specified by the angle α that it makes with the horizontal
axis or by the angle β that it makes with the vertical axis. Note that

cos(α) =
x1
‖x‖

and

cos(β) =
x2
‖x‖

and that, although neither cos(α) nor cos(β) uniquely determines the direction of the
vector by itself, together they completely determine the direction. See Figure 1.1.4.

In general, we may think of x = (x1, x2, . . . , xn) either as a point in Rn or as a vector
in Rn, starting at the origin with length ‖x‖. If x 6= 0, we say, in analogy with the case in



Section 1.1 Introduction to Rn 7

β
α

x

x

x = (    ,     )x1 x2

2

1

Figure 1.1.4 A vector viewed as an arrow from 0 = (0, 0) to x = (x1, x2)

R2, that the direction of x is the vector

u =

(
x1
‖x‖ ,

x2
‖x‖ , . . . ,

xn
‖x‖

)
(1.1.17)

The coordinates of this vector u are called the direction cosines of x because we may think
of

uk =
xk
‖x‖

as the cosine of the angle between the vector x and the kth axis for k = 1, 2, . . . , n, an
interpretation that will become clearer after our discussion of angles in Rn in the next
section. Alternatively, we may think of u as a vector of unit length that points in the same
direction as x. Any vector of length 1, such as u, is called a unit vector. We call 0 the
zero-vector since it has length 0. Note that 0 does not have a direction.

Example The vector x = (1, 2,−2, 3) in R4 has length ‖x‖ =
√

18 and direction

u =

(
1√
18
,

2√
18
,− 2√

18
,

3√
18

)
=

1√
18

(1, 2,−2, 3).

It is now possible to give geometric meanings to our definitions of scalar multiplication,
vector addition, and vector subtraction. First note that if x 6= 0 and a > 0, then

‖ax‖ = a‖x‖,

so ax has direction
1

‖ax‖ax =
1

‖x‖x,

the same as x. Hence ax points in the same direction as x, but with length a times the
length of x. If a < 0, then

‖ax‖ = |a|‖x‖ = −a‖x‖,
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Figure 1.1.5 Examples of scalar multiplication of a vector in R2

so ax has direction
1

‖ax‖ax = − 1

‖x‖x.

Hence, in this case, ax has the opposite direction of x with length |a| times the length of
x. See Figure 1.1.5 for examples in R2.

Next consider two vectors x = (x1, x2) and y = (y1, y2) in R2 and their sum

z = x + y = (x1 + y1, x2 + y2).

Note that the tip of z is located x1 units horizontally and x2 units vertically from the tip
of y. Geometrically, the tip of z is located at the tip of x if x were first translated parallel
to itself so that its tail now coincided with the tip of y. Equivalently, we can view z as
the diagonal of the parallelogram which has x and y for its sides. See Figure 1.1.6 for an
example.

x

y

x + y

x

x

1

2

Figure 1.1.6 Example of vector addition in R2

Finally, consider two vectors x = (x1, x2) and y = (y1, y2) in R2 and their difference

z = x− y = (x1 − y1, x2 − y2).
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Figure 1.1.7 Example of vector subtraction in R2

Note that since the coordinates of z are just the differences in the coordinates of x and y,
z has the magnitude and direction of an arrow pointing from the tip of y to the tip of x, as
illustrated in Figure 1.1.7. In other words, we may picture z geometrically by translating
an arrow drawn from the tip of y to the tip of z parallel to itself until its tail is at the
origin.

In the previous discussion it is tempting to think of the arrow from the tip of y to the
tip of x as really being x−y, not just a parallel translate of x−y. In fact, it is convenient
and useful to think of parallel translates of a given vector, that is, vectors which have the
same direction and magnitude, but with their tails not at the origin, as all being the same
vector, just drawn in different places in space. We shall see many instances where viewing
vectors in this way significantly helps our understanding.

Before closing this section, we need to call attention to some special vectors.

Definition The vectors
e1 = (1, 0, 0, . . . , 0)

e2 = (0, 1, 0, . . . , 0)

...

en = (0, 0, 0, . . . , 1)

(1.1.18)

in Rn are called the standard basis vectors.

Example In R2 the standard basis vectors are e1 = (1, 0) and e2 = (0, 1). Note that if
x = (x, y) is any vector in R2, then

x = (x, 0) + (0, y) = x(1, 0) + y(0, 1) = xe1 + ye2.

For example, (2, 5) = 2e1 + 5e2.

Example In R3 the standard basis vectors are e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 =
(0, 0, 1). Note that if x = (x, y, z) is any vector in R3, then

x = (x, 0, 0) + (0, y, 0) + (0, 0, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = xe1 + ye2 + ze3.

For example, (1, 2,−4) = e1 + 2e2 − 4e3.
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The previous two examples are easily generalized to show that any vector in Rn may
be written as a sum of scalar multiples of the standard basis vectors. Specifically, if
x = (x1, x2, . . . , xn), then we may write x as

x = x1e1 + x2e2 + · · ·+ xnen. (1.1.19)

We say that x is a linear combination of the standard basis vectors e1, e2, . . . , en. It is also
important to note that there is only one choice for the scalars in this linear combination.
That is, for any vector x in Rn there is one and only one way to write x as a linear
combination of the standard basis vectors.

Notes on notation

In this text, we will denote vectors using a plain bold font. This is a common convention,
but not the only one used for denoting vectors. Another frequently used convention is to
place arrows above a variable which denotes a vector. For example, one might write ~x for
what we have been denoting x.

It is also worth noting that in many books the standard basis vectors in R2 are denoted
by i and j (or ~i and ~j ), and the standard basis vectors in R3 by i, j, and k (or ~i, ~j, and
~k ). Since this notation is not easy to extend to higher dimensions, we will not make much
use of it.

Problems

1. Let x = (1, 2), y = (2, 3), and z = (−2, 4). For each of the following, plot the points
x, y, z, and the indicated point w.

(a) w = x + y (b) w = 2x− y

(c) w = z− 2x (d) w = 3x + 2y − z

2. Let x = (1, 3,−1), y = (3, 2, 1), and z = (−2, 4,−2). Compute each of the following.

(a) x + y (b) x− z + 3y

(c) 3z− 2y (d) −3x + 4z

3. Let x = (1,−1, 2, 3), y = (−2, 3, 1,−2), and z = (2, 1, 3,−4). Compute each of the
following.

(a) x− 2z (b) y + x− 3z

(c) −3y − x + 4z (d) x + 3z− 4y

4. Let x = (1, 2) and y = (−2, 3). Compute each of the following.

(a) ‖x‖ (b) ‖x− y‖
(c) ‖3x‖ (d) ‖ − 4y‖

5. Let x = (2, 3,−1), y = (2,−1, 5), and z = (3,−1,−2). Compute each of the following.

(a) ‖x‖ (b) ‖x + 2y‖
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(c) ‖ − 5x‖ (d) ‖x + y + z‖
6. Find the distances between the following pairs of points.

(a) x = (3, 2), y = (−1, 3) (b) x = (1, 2, 1), y = (−2,−1, 3)

(c) x = (4, 2, 1,−1), y = (1, 3, 2,−2) (d) z = (3,−3, 0), y = (−1, 2,−5)
(e) w = (1, 2, 4,−2, 3,−1), u = (3, 2, 1,−3, 2, 1)

7. Draw a picture of the following sets of points in R2.

(a) S1((1, 2), 1) (b) B2((1, 2), 1) (c) B̄2((1, 2), 1)

8. Draw a picture of the following sets of points in R.

(a) S0(1, 3) (b) B1(1, 3) (c) B̄1(1, 3)

9. Describe the differences between S2((1, 2, 1), 1), B3((1, 2, 1), 1), and B̄3((1, 2, 1), 1) in
R3.

10. Is the point (1, 4, 5) in the the open ball B3((−1, 2, 3), 4)?

11. Is the point (3, 2,−1, 4, 1) in the open ball B5((1, 2,−4, 2, 3), 3)?

12. Find the length and direction of the following vectors.

(a) x = (2, 1) (b) z = (1, 1,−1)

(c) x = (−1, 2, 3) (d) w = (1,−1, 2,−3)

13. Let x = (1, 3), y = (4, 1), and z = (2,−1). Plot x, y, and z. Also, show how to obtain
each of the following geometrically.

(a) w = x + y (b) w = y − x

(c) w = 3z (d) w = −2z

(e) w =
1

2
z (f) w = x + y + z

(g) w = x + 3z (h) w = x− 1

4
y

14. Suppose x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), and z = (z1, z2, . . . , zn) are vectors
in Rn and a, b, and c are scalars. Verify the following.

(a) x + y = y + x (b) x + (y + z) = (x + y) + z

(c) a(x + y) = ax + ay (d) (a+ b)x = ax + bx

(e) a(bx) = (ab)x (f) x + 0 = x

(g) 1x = x (h) x + (−x) = 0, where −x = −1x

15. Let u = (1, 1) and v = (−1, 1) be vectors in R2.

(a) Let x = (2, 1). Find scalars a and b such that x = au + bv. Are a and b unique?

(b) Let x = (x, y) be an arbitrary vector in R2. Show that there exist unique scalars
a and b such that x = au + bv.
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(c) The result in (b) shows that u and v form a basis for R2 which is different from the
standard basis of e1 and e2. Show that the vectors u = (1, 1) and w = (−1,−1)
do not form a basis for R2. (Hint: Show that there do not exist scalars a and b
such that x = au + w when x = (2, 1).)
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Angles and the Dot Product

Suppose x = (x1, x2) and y = (y1, y2) are two vectors in R2, neither of which is the zero
vector 0. Let α and β be the angles between x and y and the positive horizontal axis,
respectively, measured in the counterclockwise direction. Supposing α ≥ β, let θ = α− β.
Then θ is the angle between x and y measured in the counterclockwise direction, as shown
in Figure 1.2.1. From the subtraction formula for cosine we have

cos(θ) = cos(α− β) = cos(α) cos(β) + sin(α) sin(β). (1.2.1)

Now
cos(α) =

x1
‖x‖ ,

cos(β) =
y1
‖y‖ ,

sin(α) =
x2
‖x‖ ,

and
sin(β) =

y2
‖y‖ .

Thus, we have

cos(θ) =
x1y1
‖x‖‖y‖ +

x2y2
‖x‖‖y‖ =

x1y1 + x2y2
‖x‖‖y‖ . (1.2.2)

θ

β
α

y

x

Figure 1.2.1 The angle between two vectors

1 Copyright c© by Dan Sloughter 2001



2 Angles and the Dot Product Section 1.2

x

y

θ

Figure 1.2.2 The angle between x = (2, 1) and y = (1, 3)

Example Let θ be the smallest angle between x = (2, 1) and y = (1, 3), measured in
the counterclockwise direction. Then, by (1.2.2), we must have

cos(θ) =
(2)(1) + (1)(3)

‖x‖‖y‖ =
5√

5
√

10
=

1√
2
.

Hence

θ = cos−1

(
1√
2

)
=
π

4
.

See Figure 1.2.2.

With more work it is possible to show that if x = (x1, x2, x3) and y = (y1, y2, y3) are
two vectors in R3, neither of which is the zero vector 0, and θ is the smallest positive angle
between x and y, then

cos(θ) =
x1y1 + x2y2 + x3y3

‖x‖‖y‖ (1.2.3)

The term which appears in the numerators in both (1.2.2) and (1.2.3) arises frequently, so
we will give it a name.

Definition If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are vectors in Rn, then the
dot product of x and y, denoted x · y, is given by

x · y = x1y1 + x2y2 + · · ·+ xnyn. (1.2.4)

Note that the dot product of two vectors is a scalar, not another vector. Because of
this, the dot product is also called the scalar product. It is also an example of what is
called an inner product and is often denoted by 〈x,y〉.
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Example If x = (1, 2,−3,−2) and y = (−1, 2, 3, 5), then

x · y = (1)(−1) + (2)(2) + (−3)(3) + (−2)(5) = −1 + 4− 9− 10 = −16.

The next proposition lists some useful properties of the dot product.

Proposition For any vectors x, y, and z in Rn and scalar α,

x · y = y · x, (1.2.5)

x · (y + z) = x · y + x · z, (1.2.6)

(αx) · y = α(x · y), (1.2.7)

0 · x = 0, (1.2.8)

x · x ≥ 0, (1.2.9)

x · x = 0 only if x = 0, (1.2.10)

and
x · x = ‖x‖2. (1.2.11)

These properties are all easily verifiable using the properties of real numbers and the
definition of the dot product and will be left to Problem 9 for you to check.

At this point we can say that if x and y are two nonzero vectors in either R2 or R3

and θ is the smallest positive angle between x and y, then

cos(θ) =
x · y
‖x‖‖y‖ . (1.2.12)

We would like to be able to make the same statement about the angle between two vectors
in any dimension, but we would first have to define what we mean by the angle between
two vectors in Rn for n > 3. The simplest way to do this is to turn things around and use
(1.2.12) to define the angle. However, in order for this to work we must first know that

−1 ≤ x · y
‖x‖‖y‖ ≤ 1,

since this is the range of values for the cosine function. This fact follows from the following
inequality.

Cauchy-Schwarz Inequality For all x and y in Rn,

|x · y| ≤ ‖x‖‖y‖. (1.2.13)

To see why this is so, first note that both sides of (1.2.13) are 0 when y = 0, and hence
are equal in this case. Assuming x and y are fixed vectors in Rn, with y 6= 0, let t be a
real number and consider the function

f(t) = (x + ty) · (x + ty). (1.2.14)
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By (1.2.9), f(t) ≥ 0 for all t, while from (1.2.6), (1.2.7), and (1.2.11), we see that

f(t) = x · x + x · ty + ty · x + ty · ty = ‖x‖2 + 2(x · y)t+ ‖y‖2t2. (1.2.15)

Hence f is a quadratic polynomial with at most one root. Since the roots of f are, as given
by the quadratic formula,

−2(x · y)±
√

4(x · y)2 − 4‖x‖2‖y‖2
2‖y‖2 ,

it follows that we must have

4(x · y)2 − 4‖x‖2‖y‖2 ≤ 0. (1.2.16)

Thus
(x · y)2 ≤ ‖x‖2‖y‖2, (1.2.17)

and so
|x · y| ≤ ‖x‖‖y‖. (1.2.18)

Note that |x ·y| = ‖x‖‖y‖ if and only if there is some value of t for which f(t) = 0, which,
by (1.2.8) and (1.2.10), happens if and only if x + ty = 0, that is, x = −ty, for some
value of t. Moreover, if y = 0, then y = 0x for any x in Rn. Hence, in either case, the
Cauchy-Schwarz inequality becomes an equality if and only if either x is a scalar multiple
of y or y is a scalar multiple of x.

With the Cauchy-Schwarz inequality we have

−1 ≤ x · y
‖x‖‖y‖ ≤ 1 (1.2.19)

for any nonzero vectors x and y in Rn. Thus we may now state the following definition.

Definition If x and y are nonzero vectors in Rn, then we call

θ = cos−1

(
x · y
‖x‖‖y‖

)
(1.2.20)

the angle between x and y.

Example Suppose x = (1, 2, 3) and y = (1,−2, 2). Then x·y = 1−4+6 = 3, ‖x‖ =
√

14,
and ‖y‖ = 3, so if θ is the angle between x and y, we have

cos(θ) =
3

3
√

14
=

1√
14
.

Hence, rounding to four decimal places,

θ = cos−1

(
1√
14

)
= 1.3002.
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Example Suppose x = (2,−1, 3, 1) and y = (−2, 3, 1,−4). Then x ·y = −8, ‖x‖ =
√

15,
and ‖y‖ =

√
30, so if θ is the angle between x and y, we have, rounding to four decimal

places,

θ = cos−1

( −8√
15
√

30

)
= 1.9575.

Example Let x be a vector in Rn and let αk, k = 1, 2, . . . , n, be the angle between x
and the kth axis. Then αk is the angle between x and the standard basis vector ek. Thus

cos(αk) =
x · ek
‖x‖‖ek‖

=
xk
‖x‖ .

That is, cos(α1), cos(α2), . . . , cos(αn) are the direction cosines of x as defined in Section
1.1. For example, if x = (3, 1, 2)in R3, then ‖x‖ =

√
14 and the direction cosines of x are

cos(α1) =
3√
14
,

cos(α2) =
1√
14
,

and

cos(α3) =
2√
14
,

giving us, to four decimal places,
α1 = 0.6405,

α2 = 1.3002,

and
α3 = 1.0069.

Note that if x and y are nonzero vectors in Rn with x · y = 0, then the angle between
x and y is

cos−1(0) =
π

2
.

This is the motivation behind our next definition.

Definition Vectors x and y in Rn are said to be orthogonal (or perpendicular), denoted
x ⊥ y, if x · y = 0.

It is a convenient convention of mathematics not to restrict the definition of orthog-
onality to nonzero vectors. Hence it follows from the definition, and (1.2.8), that 0 is
orthogonal to every vector in Rn. Moreover, 0 is the only vector in Rn which has this
property, a fact you will be asked to verify in Problem 12.

Example The vectors x = (−1,−2) and y = (1, 2) are both orthogonal to z = (2,−1)
in R2. Note that y = −x and, in fact, any scalar multiple of x is orthogonal to z.
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Example In R4, x = (1,−1, 1,−1) is orthogonal to y = (1, 1, 1, 1). As in the previous
example, any scalar multiple of x is orthogonal to y.

Definition We say vectors x and y are parallel if x = αy for some scalar α 6= 0.

This definition says that vectors are parallel when one is a nonzero scalar multiple of
the other. From our proof of the Cauchy-Schwarz inequality we know that it follows that
if x and y are parallel, then |x · y| = ‖x‖‖y|. Thus if θ is the angle between x and y,

cos(θ) =
x · y
‖x‖‖y‖ = ±1.

That is, θ = 0 or θ = π. Put another way, x and y either point in the same direction or
they point in opposite directions.

Example The vectors x = (1,−3) and y = (−2, 6) are parallel since x = − 1
2y. Note

that x · y = −20 and ‖x‖‖y‖ =
√

10
√

40 = 20, so x · y = −‖x‖‖y‖. It follows that the
angle between x and y is π.

Two basic results about triangles in R2 and R3 are the triangle inequality (the sum
of the lengths of two sides of a triangle is greater than or equal to the length of the third
side) and the Pythagorean theorem (the sum of the squares of the lengths of the legs of a
right triangle is equal to the square of the length of the other side). In terms of vectors in
Rn, if we picture a vector x with its tail at the origin and a vector y with its tail at the
tip of x as two sides of a triangle, then the remaining side is given by the vector x + y.
Thus the triangle inequality may be stated as follows.

Triangle inequality If x and y are vectors in Rn, then

‖x + y‖ ≤ ‖x‖+ ‖y‖. (1.2.21)

The first step in verifying (1.2.21) is to note that, using (1.2.11) and (1.2.6),

‖x + y‖2 = (x + y) · (x + y)

= x · x + 2(x · y) + y · y
= ‖x‖2 + 2(x · y) + ‖y‖2. (1.2.22)

Since x · y ≤ ‖x‖‖y‖ by the Cauchy-Schwarz inequality, it follows that

‖x + y‖2 ≤ |x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2,

from which we obtain the triangle inequality by taking square roots.
Note that in (1.2.22) we have

‖x + y‖2 = ‖x‖2 + ‖y‖2

if and only if x · y = 0, that is, if and only if x ⊥ y. Hence we have the following famous
result.
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Pythagorean theorem Vectors x and y in Rn are orthogonal if and only if

‖x + y‖2 = ‖x‖2 + ‖y‖2. (1.2.23)

Perhaps the most important application of the dot product is in finding the orthogonal
projection of one vector onto another. This is illustrated in Figure 1.2.3, where w represents
the projection of x onto y. The result of the projection is to break x into the sum of two
components, w, which is parallel to y, and x −w, which is orthogonal to y, a procedure
which is frequently very useful. To compute w, note that if θ is the angle between x and
y, then

‖w‖ = ‖x‖| cos(θ)| = ‖x‖ |x · y|‖x‖‖y‖ =

∣∣∣∣x ·
y

‖y‖

∣∣∣∣ = |x · u|, (1.2.24)

where
u =

y

‖y‖
is the direction of y. Hence w = |x · u|u when 0 ≤ θ ≤ π

2 , which is when x · u > 0, and
w = −|x ·u|u when π

2 < θ ≤ π, which is when x ·u < 0. Thus, in either case, w = (x ·u)u.

θ

x w−

w

y

x

Figure 1.2.3 Orthogonal projection

Definition Given vectors x and y, y 6= 0, in Rn, the vector

w = (x · u)u, (1.2.25)

where u is the direction of y, is called the orthogonal projection, or simply projection, of x
onto y. We also call w the component of x in the direction of y and x · u the coordinate
of x in the direction of y.

In the special case where y = ek, the kth standard basic vector, k = 1, 2, . . . , n, we see
that the coordinate of x = (x1, x2, . . . , xn) in the direction of y is just x · ek = xk, the kth
coordinate of x.
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Example Suppose x = (1, 2, 3) and y = (1, 4, 0). Then the direction of y is

u =
1√
17

(1, 4, 0),

so the coordinate of x in the direction of y is

x · u =
1√
17

(1 + 8 + 0) =
9√
17
.

Thus the projection of x onto y is

w =
9√
17

u =
9

17
(1, 4, 0) =

(
9

17
,

36

17
, 0

)
.

Problems

1. Let x = (3,−2), y = (−2, 5), and z = (4, 1). Compute each of the following.

(a) x · y (b) 2x · y
(c) x · (3y − z) (d) −z · (x + 5y)

2. Let x = (3,−2, 1), y = (−2, 3, 5), and z = (−1, 4, 1). Compute each of the following.

(a) x · y (b) 2x · y
(c) x · (3y − z) (d) −z · (x + 5y)

3. Let x = (3,−2, 1, 2), y = (−2, 3, 4,−5), and z = (−1, 4, 1,−2). Compute each of the
following.

(a) x · y (b) 2x · y
(c) x · (3y − z) (d) −z · (x + 5y)

4. Find the angles between the following pairs of vectors. First find your answers in
radians and then convert to degrees.

(a) x = (1, 2), y = (2, 1) (b) z = (3, 1), w = (−3, 1)

(c) x = (1, 1, 1), y = (−1, 1,−1) (d) y = (−1, 2, 4), z = (2, 3,−1)

(e) x = (1, 2, 1, 2), y = (2, 1, 2, 1) (f) x = (1, 2, 3, 4, 5), z = (5, 4, 3, 2, 1)

5. The three points (2, 1), (1, 2), and (−2, 1) determine a triangle in R2. Find the measure
of its three angles and verify that their sum is π.

6. Given three points p, q, and r in Rn, the vectors q− p, r− p, and q− r describe the
sides of the triangle with vertices at p, q, and r. For each of the following, find the
measure of the three angles of the triangle with vertices at the given points.

(a) p = (1, 2, 1), q = (−1,−1, 2), r = (−1, 3,−1)

(b) p = (1, 2, 1, 1), q = (−1,−1, 2, 3), r = (−1, 3,−1, 2)
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7. For each of the following, find the angles between the given vector and the coordinate
axes.

(a) x = (−2, 3) (b) w = (−1, 2, 1)

(c) y = (2, 3, 1,−1) (d) x = (1, 2, 3, 4, 5)

8. For each of the following, find the coordinate of x in the direction of y and the projec-
tion w of x onto y. In each case verify that y ⊥ (x−w).

(a) x = (−2, 4), y = (4, 1) (b) x = (4, 1, 4), y = (−1, 3, 1)

(c) x = (−4,−3, 1), y = (1,−1, 6) (d) x = (1, 2, 4,−1), y = (2,−1, 2, 3)

9. Verify properties (1.2.5) through (1.2.11) of the dot product.

10. If w is the projection of x onto y, verify that y is orthogonal to x−w.

11. Write x = (1, 2,−3) as the sum of two vectors, one parallel to y = (2, 3, 1) and the
other orthogonal to y.

12. Suppose x is a vector with the property that x · y = 0 for all vectors y in Rn, y 6= x.
Show that it follows that x = 0.



Several Variables

The Calculus of Functions

of
Section 1.3

The Cross Product

As we noted in Section 1.1, there is no general way to define multiplication for vectors in
Rn, with the product also being a vector of the same dimension, which is useful for our
purposes in this book. However, in the special case of R3 there is a product which we will
find useful. One motivation for this product is to consider the following problem: Given
two vectors x = (x1, x2, x3) and y = (y1, y2, y3) in R3, not parallel to one another, find a
third vector w = (w1, w2, w3) which is orthogonal to both x and y. Thus we want w ·x = 0
and w · y = 0, which means we need to solve the equations

x1w1 + x2w2 + x3w3 = 0

y1w1 + y2w2 + y3w3 = 0
(1.3.1)

for w1, w2, and w3. Multiplying the first equation by y3 and the second by x3 gives us

x1y3w1 + x2y3w2 + x3y3w3 = 0

x3y1w1 + x3y2w2 + x3y3w3 = 0.
(1.3.2)

Subtracting the second equation from the first, we have

(x1y3 − x3y1)w1 + (x2y3 − x3y2)w2 = 0. (1.3.3)

One solution of (1.3.3) is given by setting

w1 = x2y3 − x3y2

w2 = −(x1y3 − x3y1) = x3y1 − x1y3.
(1.3.4)

Finally, from the first equation in (1.3.1), we now have

x3w3 = −x1(x2y3 − x3y2)− x2(x3y1 − x1y3) = x1x3y2 − x2x3y1, (1.3.5)

from which we obtain the solution

w3 = x1y2 − x2y1. (1.3.6)

The choices made in arriving at (1.3.4) and (1.3.6) are not unique, but they are the standard
choices which define w as the cross or vector product of x and y.

Definition Given vectors x = (x1, x2, x3) and y = (y1, y2, y3) in R3, the vector

x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1) (1.3.7)

is called the cross product, or vector product, of x and y.

1 Copyright c© by Dan Sloughter 2001
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Example If x = (1, 2, 3) and y = (1,−1, 1), then

x× y = (2 + 3, 3− 1,−1− 2) = (5, 2,−3).

Note that

x · (x× y) = 5 + 4− 9 = 0

and

y · (x× y) = 5− 2− 3 = 0,

showing that x ⊥ (x× y) and y ⊥ (x× y) as claimed. It is also interesting to note that

y × x = (−3− 2, 1− 3, 2 + 1) = (−5,−2, 3) = −(x× y).

This last calculation holds in general for all vectors x and y in R3.

Proposition Suppose x, y, and z are vectors in R3 and α is any real number. Then

x× y = −(y × x), (1.3.8)

x× (y + z) = (x× y) + (x× z), (1.3.9)

(x + y)× z = (x× z) + (y × z), (1.3.10)

α(x× y) = (αx)× y = x× (αy), (1.3.11)

and

x× 0 = 0. (1.3.12)

Verification of these properties is straightforward and will be left to Problem 10. Also,
notice that

e1 × e2 = e3, (1.3.13)

e2 × e3 = e1, (1.3.14)

and

e3 × e1 = e2; (1.3.15)

that is, the cross product of two standard basis vectors is either the other standard basis
vector or its negative. Moreover, note that in these cases the cross product points in the
direction your thumb would point if you were to wrap the fingers of your right hand from
the first vector to the second. This is in fact always true and results in what is known
as the right-hand rule for the orientation of the cross product, as shown in Figure 1.3.1.
Hence given two vectors x and y, we can always determine the direction of x × y; to
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x

y

x y

Figure 1.3.1 The right-hand rule

completely identify x× y geometrically, we need only to know its length. Now if θ is the
angle between x and y, then

‖x× y‖2 = (x2y3 − x3y2)2 + (x3y1 − x1y3)2 + (x1y2 − x2y1)2

= x2
2y

2
3 − 2x2x3y2y3 + x2

3y
2
2 + x2

3y
2
1 − 2x1x3y1y3 + x2

1y
2
3 + x2

1y
2
2

− 2x1x2y1y2 + x2
2y

2
1

= (x2
1 + x2

2 + x2
3)(y2

1 + y2
2 + y2

3)− (x2
1y

2
1 + x2

2y
2
2 + x2

3y
2
3)

− (2x2x3y2y3 + 2x1x3y1y3 + 2x1x2y1y2)

= (x2
1 + x2

2 + x2
3)(y2

1 + y2
2 + y2

3)− (x1y1 + x2y2 + x3y3)2

= ‖x‖2‖y‖2 − (x · y)2

= ‖x‖2‖y‖2 − (‖x‖‖y‖ cos(θ))2

= ‖x‖2‖y‖2(1− cos2(θ))

= ‖x‖2‖y‖2 sin2(θ). (1.3.16)

Taking square roots, and noting that sin(θ) ≥ 0 since, by the definition of the angle between
two vectors, 0 ≤ θ ≤ π, we have the following result.

Proposition If θ is the angle between two vectors x and y in R3, then

‖x× y‖ = ‖x‖‖y‖ sin(θ). (1.3.17)

x

y

h

θ

Figure 1.3.2 Height of the parallelogram is h = ‖y‖ sin(θ)
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Figure 1.3.3 Parallelogram with vertices at (0, 0, 0), (6, 1, 1), (8, 5, 2), and (2, 4, 1)

The last theorem has several interesting consequences. One of these comes from recog-
nizing that if we draw a parallelogram with x and y as adjacent sides, as in Figure 1.3.2,
then the height of the parallelogram is ‖y‖ sin(θ), where θ is the angle between x and y.
Hence the area of the parallelogram is ‖x‖‖y‖ sin(θ), which by (1.3.17) is ‖x× y‖.
Proposition Suppose x and y are two vectors in R3. Then the area of the parallelogram
which has x and y for adjacent sides is ‖x× y‖.
Example Consider the parallelogram P with vertices at (0, 0, 0), (6, 1, 1), (8, 5, 2), and
(2, 4, 1). Two adjacent sides are specified by the vectors x = (6, 1, 1) and y = (2, 4, 1) (see
Figure 1.3.3), so the area of P is

‖x× y‖ = ‖(1− 4, 2− 6, 24− 2)‖ = ‖(−3,−4, 22)‖ =
√

509.

See Figure 1.3.4 to see the relationship between x× y and P .

Example Consider the parallelogram P in the plane with vertices at (1, 1, ), (3, 2), (4, 4),
and (2, 3). Two adjacent sides are given by the vectors from (1, 1) to (3, 2), that is

x = (3, 2)− (1, 1) = (2, 1),

and from (1, 1) to (2, 3), that is,

y = (2, 3)− (1, 1) = (1, 2).

See Figure 1.3.5. However, since these vectors are in R2, not in R3, we cannot compute their
cross product. To get around this, we consider the vectors w = (2, 1, 0) and v = (1, 2, 0)
which are adjacent sides of the same parallelogram viewed as lying in R3. Then the area
of P is given by

‖w × v‖ = ‖(0, 0, 4− 1)‖ = ‖(0, 0, 3)‖ = 3.
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Figure 1.3.4 Parallelogram with adjacent sides x = (6, 1, 1) and y = (2, 4, 1)
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y
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Figure 1.3.5 Parallelogram with vertices at (1, 1), (3, 2), (4, 4), and (2, 3)

It is easy to extend the result of the previous theorem to computing the volume of
a parallelepiped in R3. Suppose x, y, and z are adjacent edges of parallelepiped P , as
shown in Figure 1.3.6. Then the volume V of P is ‖x× y‖, which is the area of the base,
multiplied by the height of P , which is the length of the projection of z onto x× y. Since
the latter is equal to

∣∣∣∣z ·
x× y

‖x× y‖

∣∣∣∣ ,
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x

y

z

x y

Figure 1.3.6 Parallelepiped with adjacent edges x, y, and z

we have

V = ‖x× y‖
∣∣∣∣z ·

x× y

‖x× y‖

∣∣∣∣ = |z · (x× y)|. (1.3.18)

Proposition The volume of a parallelepiped with adjacent edges x, y, and z is |z·(x×y)|.
Definition Given three vectors x, y, and z in R3, the quantity z · (x× y) is called the
scalar triple product of x, y, and x.

Example Let x = (1, 4, 1), y = (−3, 1, 1), and z = (0, 1, 5) be adjacent edges of paral-
lelepiped P (see Figure 1.3.7). Then

x× y = (4− 1,−3− 1, 1 + 12) = (3,−4, 13),

so
z · (x× y) = 0− 4 + 65 = 61.

Hence the volume of P is 61.

The final result of this section follows from (1.3.17) and the fact that the angle between
parallel vectors is either 0 or π.

Proposition Vectors x and y in R3 are parallel if and only if x× y = 0.

Note that, in particular, for any vector x in R3, x× x = 0
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Figure 1.3.7 Parallelepiped with adjacent edges x = (1, 4, 1), y = (−3, 1, 1), z = (0, 1, 5)

Problems

1. For each of the following pairs of vectors x and y, find x×y and verify that x ⊥ (x×y)
and y ⊥ (x× y).

(a) x = (1, 2,−1), y = (−2, 3,−1) (b) x = (−2, 1, 4), y = (3, 1, 2)

(c) x = (1, 3,−2), y = (3, 9, 6) (d) x = (−1, 4, 1), y = (3, 2,−1)

2. Find the area of the parallelogram in R3 that has the vectors x = (2, 3, 1) and y =
(−3, 3, 1) for adjacent sides.

3. Find the area of the parallelogram in R2 that has the vectors x = (3, 1) and y = (1, 4)
for adjacent sides.

4. Find the area of the parallelogram in R3 that has vertices at (1, 1, 1), (2, 3, 2), (−2, 4, 4),
and (−3, 2, 3).

5. Find the area of the parallelogram in R2 that has vertices at (2,−1), (4,−2), (3, 0),
and (1, 1).

6. Find the area of the triangle in R3 that has vertices at (1, 1, 0, (2, 3, 1), and (−1, 3, 2).

7. Find the area of the triangle in R2 that has vertices at (−1, 2), (2,−1), and (1, 3).

8. Find the volume of the parallelepiped that has the vectors x = (1, 2, 1), y = (−1, 1, 1),
and z = (−1,−1, 6) for adjacent sides.

9. A parallelepiped has base vertices at (1, 1, 1), (2, 3, 2), (−2, 4, 4), and (−3, 2, 3) and top
vertices at (2, 2, 6), (3, 4, 7), (−1, 5, 9), and (−2, 3, 8). Find its volume.
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10. Verify the properties of the cross product stated in (1.3.8) through (1.3.12).

11. Since |z · (x × y)|, |y · (z × x)|, and |x · (y × z)|are all equal to the volume of a
parallelepiped with adjacent edges x, y, and z, they should all have the same value.
Show that in fact

z · (x× y) = y · (z× x) = x · (y × z).

How do these compare with z · (y × z), y · (z× x), and x · (z× y)?

12. Suppose x and y are parallel vectors in R3. Show directly from the definition of the
cross product that x× y = 0.

13. Show by example that the cross product is not associative. That is, find vectors x, y,
and z such that

x× (y × z) 6= (x× y)× z.
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Section 1.4

Lines, Planes, and Hyperplanes

In this section we will add to our basic geometric understanding of Rn by studying lines
and planes. If we do this carefully, we shall see that working with lines and planes in Rn
is no more difficult than working with them in R2 or R3.

Lines in Rn

We will start with lines. Recall from Section 1.1 that if v is a nonzero vector in Rn, then,
for any scalar t, tv has the same direction as v when t > 0 and the opposite direction
when t < 0. Hence the set of points

{tv : −∞ < t <∞}

forms a line through the origin. If we now add a vector p to each of these points, we obtain
the set of points

{tv + p : −∞ < t <∞},
which is a line through p in the direction of v, as illustrated in Figure 1.4.1 for R2.

p

v

Figure 1.4.1 A line in R2 through p in the direction of v

Definition Given a vector p and a nonzero vector v in Rn, the set of all points y in Rn
such that

y = tv + p, (1.4.1)

where −∞ < t <∞, is called the line through p in the direction of v.

1 Copyright c© by Dan Sloughter 2001
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-2 -1 1 2 3 4 5

-4

-2

2

4

6

p

v

Figure 1.4.2 The line through p = (1, 2) in the direction of v = (1,−3)

Equation (1.4.1) is called a vector equation for the line. If we write y = (y1, y2, . . . , yn),
v = (v1, v2, . . . , vn), and p = (p1, p2, . . . , pn), then (1.4.1) may be written as

(y1, y2, . . . , yn) = t(v1, v2, . . . , vn) + (p1, p2, . . . , pn), (1.4.2)

which holds if and only if
y1 = tv1 + p1,

y2 = tv2 + p2,

...
...

yn = tvn + pn.

(1.4.3)

The equations in (1.4.3) are called parametric equations for the line.

Example Suppose L is the line in R2 through p = (1, 2) in the direction of v = (1,−3)
(see Figure 1.4.2). Then

y = t(1,−3) + (1, 2) = (t+ 1,−3t+ 2)

is a vector equation for L and, if we let y = (x, y),

x = t+ 1,

y = −3t+ 2
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Figure 1.4.3 The line through p = (1, 3, 1) and q = (−1, 1, 4)

are parametric equations for L. Note that if we solve for t in both of these equations, we
have

t = x− 1,

t =
2− y

3
.

Thus

x− 1 =
2− y

3
,

and so
y = −3x+ 5.

Of course, the latter is just the standard slope-intercept form for the equation of a line in
R2.

Example Now suppose we wish to find an equation for the line L in R3 which passes
through the points p = (1, 3, 1) and q = (−1, 1, 4) (see Figure 1.4.3). We first note that
the vector

p− q = (2, 2,−3)

gives the direction of the line, so

y = t(2, 2,−3) + (1, 3, 1)
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p

w

(q - p) - wq - p

Figure 1.4.4 Distance from a point q to a line

is a vector equation for L; if we let y = (x, y, z),

x = 2t+ 1,

y = 2t+ 3,

z = −3t+ 1

are parametric equations for L.

As an application of these ideas, consider the problem of finding the shortest distance
from a point q in Rn to a line L with equation y = tv + p. If we let w be the projection
of q− p onto v, then, as we saw in Section 1.2, the vector (q− p)−w is orthogonal to v
and may be pictured with its tail on L and its tip at q. Hence the shortest distance from
q to L is ‖(q− p)−w‖. See Figure 1.4.4.

Example To find the distance from the point q = (2, 2, 4) to the line L through the
points p = (1, 0, 0) and r = (0, 1, 0), we must first find an equation for L. Since the
direction of L is given by v = r− p = (−1, 1, 0), a vector equation for L is

y = t(−1, 1, 0) + (1, 0, 0).

If we let

u =
v

‖v‖ =
1√
2

(−1, 1, 0),

then the projection of q− p onto v is

w = ((q− p) · u)u =

(
(1, 2, 4) · 1√

2
(−1, 1, 0))

)
1√
2

(−1, 1, 0) =
1

2
(−1, 1, 0).
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Figure 1.4.5 Parallel (L and M) and perpendicular (L and N) lines

Thus the distance from q to L is

‖(q− p)−w‖ =

∥∥∥∥
(

3

2
,

3

2
, 4

)∥∥∥∥ =

√
82

4
=
√

20.5.

Definition Suppose L and M are lines in Rn with equations y = tv+p and y = tw+q,
respectively. We say L and M are parallel if v and w are parallel. We say L and M are
perpendicular, or orthogonal, if they intersect and v and w are orthogonal.

Note that, by definition, a line is parallel to itself.

Example The lines L and M in R3 with equations

y = t(1, 2,−1) + (4, 1, 2)

and
y = t(−2,−4, 2) + (5, 6, 1),

respectively, are parallel since (−2,−4, 2) = −2(1, 2,−1), that is, the vectors (1, 2,−1) and
(−2,−4, 2) are parallel. See Figure 1.4.5.

Example The lines L and N in R3 with equations

y = t(1, 2,−1) + (4, 1, 2)

and
y = t(3,−1, 1) + (−1, 5,−1),

respectively, are perpendicular since they intersect at (5, 3, 1) (when t = 1 for the first line
and t = 2 for the second line) and (1, 2,−1) and (3,−1, 1) are orthogonal since

(1, 2,−1) · (3,−1, 1) = 3− 2− 1 = 0.

See Figure 1.4.5.
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Planes in Rn

The following definition is the first step in defining a plane.

Definition Two vectors x and y in Rn are said to be linearly independent if neither one
is a scalar multiple of the other.

Geometrically, x and y are linearly independent if they do not lie on the same line
through the origin. Notice that for any vector x, 0 and x are not linearly independent,
that is, they are linearly dependent, since 0 = 0x.

Definition Given a vector p along with linearly independent vectors v and w, all in Rn,
the set of all points y such that

y = tv + sw + p, (1.4.4)

where −∞ < t <∞ and −∞ < s <∞, is called a plane.

The intuition here is that a plane should be a two dimensional object, which is
guaranteed because of the requirement that v and w are linearly independent. Also
note that if we let y = (y1, y2, . . . , yn), v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn), and
p = (p1, p2, . . . , pn), then (1.4.4) implies that

y1 = tv1 + sw1 + p1,

y2 = tv2 + sw2 + p2,

...
...

yn = tvn + swn + pn.

(1.4.5)

As with lines, (1.4.4) is a vector equation for the plane and the equations in (1.4.5) are
parametric equations for the plane.

Example Suppose we wish to find an equation for the plane P in R3 which contains the
three points p = (1, 2, 1), q = (−1, 3, 2), and r = (2, 3,−1). The first step is to find two
linearly independent vectors v and w which lie in the plane. Since P must contain the
line segments from p to q and from p to r, we can take

v = q− p = (−2, 1, 1)

and
w = r− p = (1, 1,−2).

Note that v and w are linearly independent, a consequence of p, q, and r not all lying on
the same line. See Figure 1.4.6. We may now write a vector equation for P as

y = t(−2, 1, 1) + s(1, 1,−2) + (1, 2, 1).

Note that y = p when t = 0 and s = 0, y = q when t = 1 and s = 0, and y = r when
t = 0 and s = 1. If we write y = (x, y, z), then, expanding the vector equation,

(x, y, z) = t(−2, 1, 1) + s(1, 1,−2) + (1, 2, 1) = (−2t+ s+ 1, t+ s+ 2, t− 2s+ 1),
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Figure 1.4.6 The plane y = tv + sw + p, with v = (−2, 1, 1), w = (1, 1,−2), p = (1, 2, 1)

giving us
x = −2t+ s+ 1,

y = t+ s+ 2,

z = t− 2s+ 1

for parametric equations for P .

To find the shortest distance from a point q to a plane P , we first need to consider the
problem of finding the projection of a vector onto a plane. To begin, consider the plane P
through the origin with equation y = ta + sb where ‖a‖ = 1, ‖b‖ = 1, and a ⊥ b. Given
a vector q not in P , let

r = (q · a)a + (q · b)b,

the sum of the projections of q onto a and onto b. Then

(q− r) · a = q · a− r · a
= q · a− (q · a)(a · a)− (q · b)(b · a)

= q · a− q · a = 0,

since a · a = ‖a‖2 = 1 and b · a = 0, and, similarly,

(q− r) · b = q · b− r · b
= q · b− (q · a)(a · b)− (q · b)(b · b)

= q · b− q · b = 0.
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r

q - p

(q - p) - r

Figure 1.4.7 Distance from a point q to a plane

It follows that for any y = ta + sb in the plane P ,

(q− r) · y = (q− r) · (ta + sb) = t(q− r) · a + s(q− r) · b = 0.

That is, q− r is orthogonal to every vector in the plane P . For this reason, we call r the
projection of q onto the plane P , and we note that the shortest distance from q to P is
‖q− r‖.

In the general case, given a point q and a plane P with equation y = tv + sw + p,
we need only find vectors a and b such that a ⊥ b, ‖a‖ = 1, ‖b‖ = 1, and the equation
y = ta + sb + p describes the same plane P . You are asked in Problem 29 to verify that
if we let c be the projection of w onto v, then we may take

a =
1

‖v‖ v

and

b =
1

‖w − c‖ (w − c).

If r is the sum of the projections of q− p onto a and b, then r is the projection of q− p
onto P and ‖(q− p)− r‖ is the shortest distance from q to P . See Figure 1.4.7.

Example To compute the distance from the point q = (2, 3, 3) to the plane P with
equation

y = t(−2, 1, 0) + s(1,−1, 1) + (−1, 2, 1),

let v = (−2, 1, 0), w = (1,−1, 1), and p = (−1, 2, 1). Then, using the above notation, we
have

a =
1√
5

(−2, 1, 0),

c = (w · a)a = −3

5
(−2, 1, 0),
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w − c =
1

5
(−1,−2, 5),

and

b =
1√
30

(−1,−2, 5).

Since q− p = (3, 1, 2), the projection of q− p onto P is

r = ((3, 1, 2) · a)a + ((3, 1, 2) · b)b = −(−2, 1, 0) +
1

6
(−1,−2, 5) =

1

6
(11,−8, 5)

and

(q− p)− r =
1

6
(7, 14, 7).

Hence the distance from q to P is

‖(q− p)− r‖ =

√
294

6
=

7√
6
.

More generally, we say vectors v1,v2, . . . ,vk in Rn are linearly independent if no one
of them can be written as a sum of scalar multiples of the others. Given a vector p and
linearly independent vectors v1,v2, . . . ,vk, we call the set of all points y such that

y = t1v1 + t2v2 + · · ·+ tkvk + p,

where −∞ < tj < ∞, j = 1, 2, . . . , k, a k-dimensional affine subspace of Rn. In this
terminology, a line is a 1-dimensional affine subspace and a plane is a 2-dimensional affine
subspace. In the following, we will be interested primarily in lines and planes and so will
not develop the details of the more general situation at this time.

Hyperplanes

Consider the set L of all points y = (x, y) in R2 which satisfy the equation

ax+ by + d = 0, (1.4.6)

where a, b, and d are scalars with at least one of a and b not being 0. If, for example,
b 6= 0, then we can solve for y, obtaining

y = −a
b
x− d

b
. (1.4.7)

If we set x = t, −∞ < t <∞, then the solutions to (1.4.6) are

y = (x, y) =

(
t,−a

b
t− d

b

)
= t

(
1,−a

b

)
+

(
0,−d

b

)
. (1.4.8)
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y

p

n
y - p

L

Figure 1.4.8 L is the set of points y for which y − p is orthogonal to n

Thus L is a line through
(
0,−db

)
in the direction of

(
1,−ab

)
. A similar calculation shows

that if a 6= 0, then we can describe L as the line through
(
− da , 0

)
in the direction of(

− b
a , 1
)
. Hence in either case L is a line in R2.

Now let n = (a, b) and note that (1.4.6) is equivalent to

n · y + d = 0. (1.4.9)

Moreover, if p = (p1, p2) is a point on L, then

n · p + d = 0, (1.4.10)

which implies that d = −n · p. Thus we may write (1.4.9) as

n · y − n · p = 0,

and so we see that (1.4.6) is equivalent to the equation

n · (y − p) = 0. (1.4.11)

Equation (1.4.11) is a normal equation for the line L and n is a normal vector for L. In
words, (1.4.11) says that the line L consists of all points in R2 whose difference with p is
orthogonal to n. See Figure 1.4.8.

Example Suppose L is a line in R2 with equation

2x+ 3y = 1.
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Then a normal vector for L is n = (2, 3); to find a point on L, we note that when x = 2,
y = −1, so p = (2,−1) is a point on L. Thus

(2, 3) · ((x, y)− (2,−1)) = 0,

or, equivalently,
(2, 3) · (x− 2, y + 1) = 0,

is a normal equation for L. Since q = (−1, 1) is also a point on L, L has direction
q− p = (−3, 2). Thus

y = t(−3, 2) + (2,−1)

is a vector equation for L. Note that

n · (q− p) = (2, 3) · (−3, 2) = 0,

so n is orthogonal to q− p.

Example If L is a line in R2 through p = (2, 3) in the direction of v = (−1, 2), then
n = (2, 1) is a normal vector for L since v · n = 0. Thus

(2, 1) · (x− 2, y − 3) = 0

is a normal equation for L. Multiplying this out, we have

2(x− 2) + (y − 3) = 0;

that is, L consists of all points (x, y) in R2 which satisfy

2x+ y = 7.

Now consider the case where P is the set of all points y = (x, y, z) in R3 that satisfy
the equation

ax+ by + cz + d = 0, (1.4.12)

where a, b, c, and d are scalars with at least one of a, b, and c not being 0. If for example,
a 6= 0, then we may solve for x to obtain

x = − b
a
y − c

a
z − d

a
. (1.4.13)

If we set y = t, −∞ < t <∞, and z = s, −∞ < s <∞, the solutions to (1.4.12) are

y = (x, y, z)

=

(
− b
a
t− c

a
s− d

a
, t, s

)

= t

(
− b
a
, 1, 0

)
+ s

(
− c
a
, 0, 1

)
+

(
−d
a
, 0, 0

)
.

(1.4.14)
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n

y - p

P

Figure 1.4.9 P is the set of points y for which y − p is orthogonal to n

Thus we see that P is a plane in R3. In analogy with the case of lines in R2, if we let
n = (a, b, c) and let p = (p1, p2, p3) be a point on P , then we have

n · p + d = ax+ by + cz + d = 0,

from which we see that n · p = −d, and so we may write (1.4.12) as

n · (y − p) = 0. (1.4.15)

We call (1.4.15) a normal equation for P and we call n a normal vector for P . In words,
(1.4.15) says that the plane P consists of all points in R3 whose difference with p is
orthogonal to n. See Figure 1.4.9.

Example Let P be the plane in R3 with vector equation

y = t(2, 2,−1) + s(−1, 2, 1) + (1, 1, 2).

If we let v = (2, 2,−1) and w = (−1, 2, 1), then

n = v ×w = (4,−1, 6)

is orthogonal to both v and w. Now if y is on P , then

y = tv + sw + p

for some scalars t and s, from which we see that

n · (y − p) = n · (tv + sw) = t(n · v) + s(n ·w) = 0 + 0 = 0.

That is, n is a normal vector for P . So, letting y = (x, y, z),

(4,−1, 6) · (x− 1, y − 1, z − 2) = 0 (1.4.16)
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is a normal equation for P . Multiplying (1.4.16) out, we see that P consists of all points
(x, y, z) in R3 which satisfy

4x− y + 6z = 15.

Example Suppose p = (1, 2, 1), q = (−2,−1, 3), and r = (2,−3,−1) are three points
on a plane P in R3. Then

v = q− p = (−3,−3, 2)

and
w = r− p = (1,−5,−2)

are vectors lying on P . Thus

n = v ×w = (16,−4, 18)

is a normal vector for P . Hence

(16,−4, 18) · (x− 1, y − 2, z − 1) = 0

is a normal equation for P . Thus P is the set of all points (x, y, z) in R3 satisfying

16x− 4y + 18y = 26.

The following definition generalizes the ideas in the previous examples.

Definition Suppose n and p are vectors in Rn with n 6= 0. The set of all vectors y in
Rn which satisfy the equation

n · (y − p) = 0 (1.4.17)

is called a hyperplane through the point p. We call n a normal vector for the hyperplane
and we call (1.4.17) a normal equation for the hyperplane.

In this terminology, a line in R2 is a hyperplane and a plane in R3 is a hyperplane. In
general, a hyperplane in Rn is an (n − 1)-dimensional affine subspace of Rn. Also, note
that if we let n = (a1, a2, . . . , an), p = (p1, p2, . . . , pn), and y = (y1, y2, . . . , yn), then we
may write (1.4.17) as

a1(y1 − p1) + a2(y2 − p2) + · · ·+ an(yn − pn) = 0, (1.4.18)

or
a1y1 + a2y2 + · · ·+ anyn + d = 0 (1.4.19)

where d = −n · p.

Example The set of all points (w, x, y, z) in R4 which satisfy

3w − x+ 4y + 2z = 5

is a 3-dimensional hyperplane with normal vector n = (3,−1, 4, 2).
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p
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q - p

H

.| (q - p)   u|

Figure 1.4.10 Distance from a point q to a hyperplane H

The normal equation description of a hyperplane simplifies a number of geometric
calculations. For example, given a hyperplane H through p with normal vector n and a
point q in Rn, the distance from q to H is simply the length of the projection of q − p
onto n. Thus if u is the direction of n, then the distance from q to H is |(q− p) · u|. See
Figure 1.4.10. Moreover, if we let d = −p · n as in (1.4.19), then we have

|(q− p) · u| = |q · u− p · u| = q · n− p · n
‖n‖ =

|q · n + d|
‖n‖ . (1.4.20)

Note that, in particular, (1.4.20) may be used to find the distance from a point to a line
in R2 and from a point to a plane in R3.

Example To find the distance from the point q = (2, 3, 3) to the plane P in R3 with
equation

x+ 2y + z = 4,

we first note that n = (1, 2, 1) is a normal vector for P . Using (1.4.20) with d = −4, we
see that the distance from q to P is

|q · n + d|
‖n‖ =

|(2, 3, 3) · (1, 2, 1)− 4|√
6

=
7√
6
.

Note that this agrees with an earlier example.

We will close this section with a few words about angles between hyperplanes. Note
that a hyperplane does not have a unique normal vector. In particular, if n is a normal
vector for a hyperplane H, then −n is also a normal vector for H. Hence it is always
possible to choose the normal vectors required in the following definition.

Definition Let G and H be hyperplanes in Rn with normal equations

m · (y − p) = 0
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and
n · (y − q) = 0,

respectively, chosen so that m · n ≥ 0. Then the angle between G and H is the angle
between m and n. Moreover, we will say that G and H are orthogonal if m and n are
orthogonal and we will say G and H are parallel if m and n are parallel.

The effect of the choice of normal vectors in the definition is to make the angle between
the two hyperplanes be between 0 and π

2 .

Example To find the angle θ between the two planes in R3 with equations

x+ 2y − z = 3

and
x− 3y − z = 5,

we first note that the corresponding normal vectors are m = (1, 2,−1) and n = (1,−3,−1).
Since m · n = −4, we will compute the angle between m and −n. Hence

cos(θ) =
m · (−n)

‖m‖‖n‖ =
4√

6
√

11
=

4√
66
.

Thus, rounding to four decimal places,

θ = cos−1

(
4√
66

)
= 1.0560.

See Figure 1.4.11.

Example The planes in R3 with equations

3x+ y − 2z = 3

and
6x+ 2y − 4z = 13

are parallel since their normal vectors are m = (3, 1,−2) and n = (6, 2,−4) and n = 2m.

Problems

1. Find vector and parametric equations for the line in R2 through p = (2, 3) in the
direction of v = (1,−2).

2. Find vector and parametric equations for the line in R4 through p = (1,−1, 2, 3) in
the direction of v = (−2, 3,−4, 1).

3. Find vector and parametric equations for the lines passing through the following pairs
of points.
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Figure 1.4.11 The planes x+ 2y − z = 3 and x− 3y − z = 5

(a) p = (−1,−3), q = (4, 2) (b) p = (2, 1, 3), q = (−1, 2, 1)

(c) p = (3, 2, 1, 4), q = (2, 0, 4, 1) (d) p = (4,−3, 2), q = (1,−2, 4)

4. Find the distance from the point q = (1, 3) to the line with vector equation y =
t(2, 1) + (3, 1).
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5. Find the distance from the point q = (1, 3,−2) to the line with vector equation y =
t(2,−1, 4) + (1,−2,−1).

6. Find the distance from the point r = (−1, 2,−3) to the line through the points p =
(1, 0, 1) and q = (0, 2,−1).

7. Find the distance from the point r = (−1,−2, 2, 4) to the line through the points
p = (2, 1, 1, 2) and q = (1, 2,−4, 3).

8. Find vector and parametric equations for the plane in R3 which contains the points
p = (1, 3,−1), q = (−2, 1, 1), and r = (2,−3, 2).

9. Find vector and parametric equations for the plane in R4 which contains the points
p = (2,−3, 4,−1), q = (−1, 3, 2,−4), and r = (2,−1, 2, 1).

10. Let P be the plane in R3 with vector equation y = t(1, 2, 1) + s(−2, 1, 3) + (1, 0, 1).
Find the distance from the point q = (1, 3, 1) to P .

11. Let P be the plane in R4 with vector equation y = t(1,−2, 1, 4)+s(2, 1, 2, 3)+(1, 0, 1, 0).
Find the distance from the point q = (1, 3, 1, 3) to P .

12. Find a normal vector and a normal equation for the line in R2 with vector equation
y = t(1, 2) + (1,−1).

13. Find a normal vector and a normal equation for the line in R2 with vector equation
y = t(0, 1) + (2, 0).

14. Find a normal vector and a normal equation for the plane in R3 with vector equation
y = t(1, 2, 1) + s(3, 1,−1) + (1,−1, 1).

15. Find a normal vector and a normal equation for the line in R2 which passes through
the points p = (3, 2) and q = (−1, 3).

16. Find a normal vector and a normal equation for the plane in R3 which passes through
the points p = (1, 2,−1), q = (−1, 3, 1), and r = (2,−2, 2).

17. Find the distance from the point q = (3, 2) in R2 to the line with equation x+2y−3 = 0.

18. Find the distance from the point q = (1, 2,−1) in R3 to the plane with equation
x+ 2y − 3x = 4.

19. Find the distance from the point q = (3, 2, 1, 1) in R4 to the hyperplane with equation
3x+ y − 2z + 3w = 15.

20. Find the angle between the lines in R2 with equations 3x+ y = 4 and x− y = 5.

21. Find the angle between the planes in R3 with equations 3x−y+2z = 5 and x−2y+z =
4.

22. Find the angle between the hyperplanes in R4 with equations w + x + y − z = 3 and
2w − x+ 2y + z = 6.

23. Find an equation for a plane in R3 orthogonal to the plane with equation x+2y−3z = 4
and passing through the point p = (1,−1, 2).
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24. Find an equation for the plane in R3 which is parallel to the plane x− y+ 2z = 6 and
passes through the point p = (2, 1, 2).

25. Show that if x, y, and z are vectors in Rn with x ⊥ y and x ⊥ z, then x ⊥ (ay + bz)
for any scalars a and b.

26. Find parametric equations for the line of intersection of the planes in R3 with equations
x+ 2y − 6z = 4 and 2x− y + z = 2.

27. Find parametric equations for the plane of intersection of the hyperplanes in R4 with
equations w − x+ y + z = 3 and 2w + 4x− y + 2z = 8.

28. Let L be the line in R3 with vector equation y = t(1, 2,−1) + (3, 2, 1) and let P be the
plane in R3 with equation x+ 2y − 3z = 8. Find the point where L intersects P .

29. Let P be the plane in Rn with vector equation y = tv+sw+p. Let c be the projection
of w onto v,

a =
1

‖v‖ v,

and

b =
1

‖w − c‖ (w − c).

Show that y = ta + sb + p is also a vector equation for P .



Several Variables

The Calculus of Functions

of
Section 1.5

Linear and Affine Functions

One of the central themes of calculus is the approximation of nonlinear functions by linear
functions, with the fundamental concept being the derivative of a function. This section
will introduce the linear and affine functions which will be key to understanding derivatives
in the chapters ahead.

Linear functions

In the following, we will use the notation f : Rm → Rn to indicate a function whose
domain is a subset of Rm and whose range is a subset of Rn. In other words, f takes a
vector with m coordinates for input and returns a vector with n coordinates. For example,
the function

f(x, y, z) = (sin(x+ y), 2x2 + z)

is a function from R3 to R2.

Definition We say a function L : Rm → Rm is linear if (1) for any vectors x and y in
Rm,

L(x + y) = L(x) + L(y), (1.5.1)

and (2) for any vector x in Rm and scalar a,

L(ax) = aL(x). (1.5.2)

Example Suppose f : R→ R is defined by f(x) = 3x. Then for any x and y in R,

f(x+ y) = 3(x+ y) = 3x+ 3y = f(x) + f(y),

and for any scalar a,
f(ax) = 3ax = af(x).

Thus f is linear.

Example Suppose L : R2 → R3 is defined by

L(x1, x2) = (2x1 + 3x2, x1 − x2, 4x2).

Then if x = (x1, x2) and y = (y1, y2) are vectors in R2,

L(x + y) = L(x1 + y1, x2 + y2)

= (2(x1 + y1) + 3(x2 + y2), x1 + y1 − (x2 + y2), 4(x2 + y2))

= (2x1 + 3x2, x1 − x2, 4x2) + (2y1 + 3y2, y1 − y2, 4y2)

= L(x1, x2) + L(y1, y2)

= L(x) + L(y).

1 Copyright c© by Dan Sloughter 2001
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Also, for x = (x1, x2) and any scalar a, we have

L(ax) = L(ax1, ax2)

= (2ax1 + 3ax2, ax1 − ax2, 4ax2)

= a(2x2 + 3x2, x1 − x2, 4x2)

= aL(x).

Thus L is linear.

Now suppose L : R → R is a linear function and let a = L(1). Then for any real
number x,

L(x) = L(1x) = xL(1) = ax. (1.5.3)

Since any function L : R → R defined by L(x) = ax, where a is a scalar, is linear (see
Problem 1), it follows that the only functions L : R→ R which are linear are those of the
form L(x) = ax for some real number a. For example, f(x) = 5x is a linear function, but
g(x) = sin(x) is not.

Next, suppose L : Rm → R is linear and let a1 = L(e1), a2 = L(e2), . . . , am = L(em).
If x = (x1, x2, . . . , xm) is a vector in Rm, then we know that

x = x1e1 + x2e2 + · · ·+ xmem.

Thus
L(x) = L(x1e1 + x2e2 + · · ·+ xmem)

= L(x1e1) + L(x2e2) + · · ·+ L(xmem)

= x1L(e1 + x2L(e2) + · · ·+ xmL(em)

= x1a1 + x2a2 + · · ·+ xmam

= a · x,

(1.5.4)

where a = (a1, a2, . . . , am). Since for any vector a in Rm, the function L(x) = a ·x is linear
(see Problem 1), it follows that the only functions L : Rm → R which are linear are those
of the form L(x) = a · x for some fixed vector a in Rm. For example,

f(x, y) = (2,−3) · (x, y) = 2x− 3y

is a linear function from R2 to R, but

f(x, y, z) = x2y + sin(z)

is not a linear function from R3 to R.
Now consider the general case where L : Rm → Rn is a linear function. Given a vector

x in Rm, let Lk(x) be the kth coordinate of L(x), k = 1, 2, . . . , n. That is,

L(x) = (L1(x), L2(x), . . . , Ln(x)).
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Since L is linear, for any x and y in Rm we have

L(x + y) = L(x) + L(y),

or, in terms of the coordinate functions,

(L1(x + y), L2(x + y), . . . , Ln(x + y)) = (L1(x), L2(x), . . . , Ln(x))

+ (L1(y), L2(y), . . . , Ln(y))

= (L1(x) + L1(y), L2(x) + L2(y),

. . . , Ln(x) + Ln(y)).

Hence Lk(x + y) = Lk(x) + Lk(y) for k = 1, 2, . . . , n. Similarly, if x is in Rm and a is a
scalar, then L(ax) = aL(x), so

(L1(ax), L2(ax), . . . , Ln(ax) = a(L1(x), L2(x), . . . , Ln(x))

= (aL1(x), aL2(x), . . . , aLn(x)).

Hence Lk(ax) = aLk(x) for k = 1, 2, . . . , n. Thus for each k = 1, 2, . . . , n, Lk : Rm → R is
a linear function. It follows from our work above that, for each k = 1, 2, . . . , n, there is a
fixed vector ak in Rm such that Lk(x) = ak · x for all x in Rm. Hence we have

L(x) = (a1 · x,a2 · x, . . . ,an · x) (1.5.5)

for all x in Rm. Since any function defined as in (1.5.5) is linear (see Problem 1 again), it
follows that the only linear functions from Rm to Rn must be of this form.

Theorem If L : Rm → Rn is linear, then there exist vectors a1,a2, . . . ,an in Rm such
that

L(x) = (a1 · x,a2 · x, . . . ,an · x) (1.5.6)

for all x in Rm.

Example In a previous example, we showed that the function L : R2 → R3 defined by

L(x1, x2) = (2x1 + 3x2, x1 − x2, 4x2)

is linear. We can see this more easily now by noting that

L(x1, x2) = ((2, 3) · (x1, x2), (1,−1) · (x1, x2), (0, 4) · (x1, x2)).

Example The function

f(x, y, z) = (x+ y, sin(x+ y + z))

is not linear since it cannot be written in the form of (1.5.6). In particular, the function
f2(x, y, z) = sin(x+y+z) is not linear; from our work above, it follows that f is not linear.
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Matrix notation

We will now develop some notation to simplify working with expressions such as (1.5.6).
First, we define an n×m matrix to be to be an array of real numbers with n rows and m
columns. For example,

M =




2 3
1 −1
0 4




is a 3×2 matrix. Next, we will identify a vector x = (x1, x2, . . . , xm) in Rm with the m×1
matrix

x =




x1

x2
...
xm


 ,

which is called a column vector. Now define the product Mx of an n×m matrix M with
an m× 1 column vector x to be the n× 1 column vector whose kth entry, k = 1, 2, . . . , n,
is the dot product of the kth row of M with x. For example,




2 3
1 −1
0 4



[

2
1

]
=




4 + 3
2− 1
0 + 4


 =




7
1
4


 .

In fact, for any vector x = (x1, x2) in R2,




2 3
1 −1
0 4



[
x1

x2

]
=




2x1 + 3x2

x1 − x2

4x2


 .

In other words, if we let

L(x1, x2) = (2x1 + 3x2, x1 − x2, 4x2),

as in a previous example, then, using column vectors, we could write

L(x1, x2) =




2 3
1 −1
0 4



[
x1

x2

]
.

In general, consider a linear function L : Rm → Rn defined by

L(x) = (a1 · x,a2 · x, . . . ,an · x) (1.5.7)

for some vectors a1,a2, . . . ,an in Rm. If we let M be the n×m matrix whose kth row is
ak, k = 1, 2, . . . , n, then

L(x) = Mx (1.5.8)
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for any x in Rm. Now, from our work above,

ak = (Lk(e1), Lk(e2), . . . , Lk(em), (1.5.9)

which means that the jth column of M is




L1(ej)
L2(ej)

...
Ln(ej)


 , (1.5.10)

j = 1, 2, . . . ,m. But (1.5.10) is just L(ej) written as a column vector. Hence M is the
matrix whose columns are given by the column vectors L(e1), L(e2), . . . , L(em).

Theorem Suppose L : Rm → Rn is a linear function and M is the n×m matrix whose
jth column is L(ej), j = 1, 2, . . . ,m. Then for any vector x in Rm,

L(x) = Mx. (1.5.11)

Example Suppose L : R3 → R2 is defined by

L(x, y, z) = (3x− 2y + z, 4x+ y).

Then

L(e1) = L(1, 0, 0) = (3, 4),

L(e2) = L(0, 1, 0) = (−2, 1),

and

L(e3) = L(0, 0, 1) = (1, 0).

So if we let

M =

[
3 −2 1
4 1 0

]
,

then

L(x, y, z) =

[
3 −2 1
4 1 0

]

x
y
z


 .

For example,

L(1,−1, 3) =

[
3 −2 1
4 1 0

]


1
−1

3


 =

[
3 + 2 + 3
4− 1 + 0

]
=

[
8
3

]
.
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θ

θ x

x

R      (   )

Figure 1.5.1 Rotating a vector in the plane

Example Let Rθ : R2 → R2 be the function that rotates a vector x in R2 counterclock-
wise through an angle θ, as shown in Figure 1.5.1. Geometrically, it seems reasonable that
Rθ is a linear function; that is, rotating the vector x + y through an angle θ should give
the same result as first rotating x and y separately through an angle θ and then adding,
and rotating a vector ax through an angle θ should give the same result as first rotating
x through an angle θ and then multiplying by a. Now, from the definition of cos(θ) and
sin(θ),

Rθ(e1) = Rθ(1, 0) = (cos(θ), sin(θ))

(see Figure 1.5.2), and, since e2 is e1 rotated, counterclockwise, through an angle π
2 ,

Rθ(e2) = Rθ+π
2

(e1) =
(

cos
(
θ +

π

2

)
, sin

(
θ +

π

2

))
= (− sin(θ), cos(θ)).

Hence

Rθ(x, y) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
. (1.5.12)

You are asked in Problem 9 to verify that the linear function defined in (1.5.12) does in
fact rotate vectors through an angle θ in the counterclockwise direction. Note that, for
example, when θ = π

2 , we have

Rπ
2

(x, y) =

[
0 −1
1 0

] [
x
y

]
.

In particular, note that Rπ
2

(1, 0) = (0, 1) and Rπ
2

(0, 1) = (−1, 0); that is, Rπ
2

takes e1 to
e2 and e2 to −e1. For another example, if θ = π

6 , then

Rπ
6

(x, y) =




√
3

2
−1

2

1

2

√
3

2



[
x
y

]
.
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θ

e1

R  θ e1 θ

cos(   )

θ

θ

sin(  )

(    ) = (cos(  ), sin(  ))θ

Figure 1.5.2 Rotating e1 through an angle θ

In particular,

Rπ
6

(1, 2) =




√
3

2
−1

2

1

2

√
3

2



[

1
2

]
=




√
3

2
− 1

1

2
+
√

3


 =




√
3− 2

2

1 + 2
√

3

2


 .

Affine functions

Definition We say a function A : Rm → Rn is affine if there is a linear function L :
Rm → Rn and a vector b in Rn such that

A(x) = L(x) + b (1.5.13)

for all x in Rm.

An affine function is just a linear function plus a translation. From our knowledge of
linear functions, it follows that if A : Rm → Rn is affine, then there is an n×m matrix M
and a vector b in Rn such that

A(x) = Mx + b (1.5.14)

for all x in Rm. In particular, if f : R→ R is affine, then there are real numbers m and b
such that

f(x) = mx+ b (1.5.15)

for all real numbers x.

Example The function

A(x, y) = (2x+ 3, y − 4x+ 1)
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is an affine function from R2 to R2 since we may write it in the form

A(x, y) = L(x, y) + (3, 1),

where L is the linear function

L(x, y) = (2x, y − 4x).

Note that L(1, 0) = (2,−4) and L(0, 1) = (0, 1), so we may also write A in the form

A(x, y) =

[
2 0
−4 1

] [
x
y

]
+

[
3
1

]
.

Example The affine function

A(x, y) =




1√
2
− 1√

2
1√
2

1√
2



[
x
y

]
+

[
1
2

]

first rotates a vector, counterclockwise, in R2 through an angle of π
4 and then translates it

by the vector (1, 2).

Problems

1. Let a1,a2, . . . ,an be vectors in Rm and define L : Rm → Rn by

L(x) = (a1 · x,a2 · x, . . . ,an · x).

Show that L is linear. What does L look like in the special cases

(a) m = n = 1?

(b) n = 1?

(c) m = 1?

2. For each of the following functions f , find the dimension of the domain space, the
dimension of the range space, and state whether the function is linear, affine, or neither.

(a) f(x, y) = (3x− y, 4x, x+ y) (b) f(x, y) = (4x+ 7y, 5xy)

(c) f(x, y, z) = (3x+ z, y − z, y − 2x) (d) f(x, y, z) = (3x− 4z, x+ y + 2z)

(e) f(x, y, z) =

(
3x+ 5, y + z,

1

x+ y + z

)
(f) f(x, y) = 3x+ y − 2

(g) f(x) = (x, 3x) (h) f(w, x, y, z) = (3x,w + x− y + z − 5)

(i) f(x, y) = (sin(x+ y), x+ y) (j) f(x, y) = (x2 + y2, x− y, x2 − y2)

(k) f(x, y, z) = (3x+ 5, y + z, 3x− z + 6, z − 1)
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3. For each of the following linear functions L, find a matrix M such that L(x) = Mx.

(a) L(x, y) = (x+ y, 2x− 3y) (b) L(w, x, y, z) = (x, y, z, w)

(c) L(x) = (3x, x, 4x) (d) L(x) = −5x

(e) L(x, y, z) = 4x− 3y + 2z (f) L(x, y, z) = (x+ y + z, 3x− y, y + 2z)

(g) L(x, y) = (2x, 3y, x+ y, x− y, 2x− 3y) (h) L(x, y) = (x, y)

(i) L(w, x, y, z) = (2w + x− y + 3z, w + 2x− 3z)

4. For each of the following affine functions A, find a matrix M and a vector b such that
A(x) = Mx + b.

(a) A(x, y) = (3x+ 4y − 6, 2x+ y − 3) (b) A(x) = 3x− 4

(c) A(x, y, z) = (3x+ y − 4, y − z + 1, 5) (d) A(w, x, y, z) = (1, 2, 3, 4)

(e) A(x, y, z) = 3x− 4y + z − 1 (f) A(x) = (3x,−x, 2)

(g) A(x1, x2, x3) = (x1 − x2 + 1, x1 − x3 + 1, x2 + x3)

5. Multiply the following.

(a)

[
1 2 3
3 2 1

]


1
2
−3


 (b)



−1 2

3 −2
−1 1



[

3
−1

]

(c) [ 1 2 1− 3 ]




2
3
−2

1


 (d)




1 2 1
3 2 3
0 1 2






2
−1

2




6. Let L : R2 → R2 be the linear function that maps a vector x = (x, y) to its reflection
across the horizontal axis. Find the matrix M such that L(x) = Mx for all x in R2.

7. Let L : R2 → R2 be the linear function that maps a vector x = (x, y) to its reflection
across the line y = x. Find the matrix M such that L(x) = Mx for all x in R2.

8. Let L : R2 → R2 be the linear function that maps a vector x = (x, y) to its reflection
across the line y = −x. Find the matrix M such that L(x) = Mx for all x in R2.

9. Let Rθ be defined as in (1.5.12).

(a) Show that for any x in R2, ‖Rθ(x)‖ = ‖x‖.
(b) For any x in R2, let α be the angle between x and Rθ(x). Show that cos(α) =

cos(θ). Together with (a), this verifies that Rθ(x) is the rotation of x through an
angle θ.

10. Let Sθ : R2 → R2 be the linear function that rotates a vector x clockwise through an
angle θ. Find the matrix M such that Sθ(x) = Mx for all x in R2.

11. Given a function f : Rm → Rn, we call the set

{y : y = f(x) for some x in Rm}

the image, or range, of f .
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(a) Suppose L : R→ Rn is linear with L(1) 6= 0. Show that the image of L is a line in
Rn which passes through 0.

(b) Suppose L : R2 → Rn is linear and L(e1) and L(e2) are linearly independent.
Show that the image of L is a plane in Rn which passes through 0.

12. Given a function f : Rm → R, we call the set

{(x1, x2, . . . , xm, xm+1) : xm+1 = f(x1, x2, . . . , xm)}

the graph of f . Show that if L : Rm → R is linear, then the graph of L is a hyperplane
in Rm+1.
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The Calculus of Functions

of

Section 1.6

Operations with Matrices

In the previous section we saw the important connection between linear functions and
matrices. In this section we will discuss various operations on matrices which we will find
useful in our later work with linear functions.

The algebra of matrices

If M is an n × m matrix with aij in the ith row and jth column, i = 1, 2, . . . , n, j =
1, 2, . . . ,m, then we will write M = [aij ]. With this notation the definitions of addition,
subtraction, and scalar multiplication for matrices are straightforward.

Definition Suppose M = [aij ] and N = [bij ] are n×m matrices and c is a real number.
Then we define

M +N = [aij + bij ], (1.6.1)

M −N = [aij − bij ], (1.6.2)

and
cM = [caij ]. (1.6.3)

In other words, we define addition, subtraction, and scalar multiplication for matrices
by performing these operations on the individual elements of the matrices, in a manner
similar to the way we perform these operations on vectors.

Example If

M =

[
1 2 3
−5 3 −1

]

and

N =

[
3 1 4
1 −3 2

]
,

then, for example,

M +N =

[
1 + 3 2 + 1 3 + 4
−5 + 1 3− 3 −1 + 2

]
=

[
4 3 7
−4 0 1

]
,

M −N =

[
1− 3 2− 1 3− 4
−5− 1 3 + 3 −1− 2

]
=

[
−2 1 −1
−6 6 −3

]
,

and

3M =

[
3 6 9

−15 9 −2

]
.

1 Copyright c© by Dan Sloughter 2001
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These operations have natural interpretations in terms of linear functions. Suppose
L : Rm → Rn and K : Rm → Rn are linear with L(x) = Mx and K(x) = Nx for n ×m
matrices M and N . If we define L+K : Rn → Rm by

(L+K)(x) = L(x) +K(x), (1.6.4)

then

(L+K)(ej) = L(ej) +K(ej) (1.6.5)

for j = 1, 2, . . . ,m. Hence the jth column of the matrix which represents L+K is the sum
of the jth columns of M and N . In other words,

(L+K)(x) = (M +N)x (1.6.6)

for all x in Rm. Similarly, if we define L−K : Rm → Rn by

(L−K)(x) = L(x)−K(x), (1.6.7)

then

(L−K)(x) = (M −N)x. (1.6.8)

If, for any scalar c, we define cL : Rm → Rn by

cL(x) = c(L(x)), (1.6.9)

then

cL(ej) = c(L(ej)) (1.6.10)

for j = 1, 2, . . . ,m. Hence the jth column of the matrix which represents cL is the scalar
c times the jth column of M . That is,

cL(x) = (cM)x (1.6.11)

for all x in Rm. In short, the operations of addition, subtraction, and scalar multiplication
for matrices corresponds in a natural way with the operations of addition, subtraction,
and scalar multiplication for linear functions.

Now consider the case where L : Rm → Rp and K : Rp → Rn are linear functions. Let
M be the p × m matrix such that L(x) = Mx for all x in Rm and let N be the n × p
matrix such that K(x) = Nx for all x in Rp. Since for any x in Rm, L(x) is in Rp, we can
form K ◦ L : Rm → Rn, the composition of K with L, defined by

K ◦ L(x) = K(L(x)). (1.6.12)

Now

K(L(x)) = N(Mx), (1.6.13)
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so it would be natural to define NM , the product of the matrices N and M , to be the
matrix of K ◦ L, in which case we would have

N(Mx) = (NM)x. (1.6.14)

Thus we want the jth column of NM , j = 1, 2, . . . ,m, to be

K ◦ L(ej) = N(L(ej)), (1.6.15)

which is just the dot product of L(ej) with the rows of N . But L(ej) is the jth column of
M , so the jth column of NM is formed by taking the dot product of the jth column of M
with the rows of N . In other words, the entry in the ith row and jth column of NM is the
dot product of the ith row of N with the jth column of M . We write this out explicitly
in the following definition.

Definition If N = [aij ] is an n × p matrix and M = [bij ] is a p ×m matrix, then we
define the product of N and M to be the n×m matrix NM = [cij ], where

cij =

p∑

k=1

aikbkj , (1.6.16)

i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

Note that NM is an n ×m matrix since K ◦ L : Rm → Rn. Moreover, the product
NM of two matrices N and M is defined only when the number of columns of N is equal
to the number of rows of M .

Example If

N =




1 2
−1 3

2 −2




and

M =

[
2 −2 1 3
1 2 −1 −2

]
,

then

NM =




1 2
−1 3

2 −2



[

2 −2 1 3
1 2 −1 −2

]

=




2 + 2 −2 + 4 1− 2 3− 4
−2 + 3 2 + 6 −1− 3 −3− 6

4− 2 −4− 4 2 + 2 6 + 4




=




4 2 −1 −1
1 8 −4 −9
2 −8 4 10


 .
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Note that N is 3 × 2, M is 2 × 4, and NM is 3 × 4. Also, note that it is not possible to
form the product in the other order.

Example Let L : R2 → R3 be the linear function defined by

L(x, y) = (3x− 2y, x+ y, 4y)

and let K : R3 → R2 be the linear function defined by

K(x, y, z) = (2x− y + z, x− y − z).

Then the matrix for L is

M =




3 −2
1 1
0 4


 ,

the matrix for K is

N =

[
2 −1 1
1 −1 −1

]
,

and the matrix for K ◦ L : R2 → R2 is

NM =

[
2 −1 1
1 −1 −1

]


3 −2
1 1
0 4


 =

[
6− 1 + 0 −4− 1 + 4
3− 1 + 0 −2− 1− 4

]
=

[
5 −1
2 −7

]
.

In other words,

K ◦ L(x, y) =

[
5 −1
2 −7

] [
x
y

]
=

[
5x− y
2x− 7y

]
.

Note that it in this case it is possible to form the composition in the other order. The
matrix for L ◦K : R3 → R3 is

MN =




3 −2
1 1
0 4



[

2 −1 1
1 −1 −1

]
=




6− 2 −3 + 2 3 + 2
2 + 1 −1− 1 1− 1
0 + 4 0− 4 0− 4


 =




4 −1 5
3 −2 0
4 −4 −4


 ,

and so

L ◦K(x, y, z) =




4 −1 5
3 −2 0
4 −4 −4





x
y
z


 =




4x− y + 5z
3x− 2y

4x− 4y − 4z


 .

In particular, note that not only is NM 6= MN , but in fact NM and MN are not even
the same size.

Determinants

The notion of the determinant of a matrix is closely related to the idea of area and volume.
To begin our definition, consider the 2× 2 matrix

M =

[
a1 a2

b1 b2

]
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= (    ,    )a a2

b2b1= (    ,    )

1a

b

Figure 1.6.1 A parallelogram in R2 with adjacent sides a and b

and let a = (a1, a2) and b = (b1, b2). If P is the parallelogram which has a and b for
adjacent sides and A is the area of P (see Figure 1.6.1), then we saw in Section 1.3 that

A = ‖(a1, a2, 0)× (b1, b2, 0)‖ = ‖(0, 0, a1b2 − a2b1‖ = |a1b2 − a2b1|. (1.6.17)

This motivates the following definition.

Definition Given a 2× 2 matrix

M =

[
a1 a2

b1 b2

]
,

the determinant of M , denoted det(M), is

det(M) = a1b2 − a2b1. (1.6.18)

Hence we have A = |det(M)|. In words, for a 2 × 2 matrix M , the absolute value of
the determinant of M equals the area of the parallelogram which has the rows of M for
adjacent sides.

Example We have

det

[
1 3
−4 5

]
= (1)(5)− (3)(−4) = 5 + 12 = 17.

Now consider a 3× 3 matrix

M =



a1 a2 a3

b1 b2 b3
c1 c2 c3
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and let a = (a1, a2, a3), b = (b1, b2, b3), and c = (c1, c2, c3). If V is the volume of the
parallelepiped P with adjacent edges a, b, and c, then, again from Section 1.3,

V = |a · (b× c)|
= |a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1)|

=

∣∣∣∣a1 det

[
b2 b3
c2 c3

]
− a2 det

[
b1 b3
c1 c3

]
+ a3 det

[
b1 b2
c1 c2

]∣∣∣∣ .
(1.6.19)

Definition Given a 3× 3 matrix

M =



a1 a2 a3

b1 b2 b3
c1 c2 c3


 ,

the determinant of M , denoted det(M), is

det(M) = a1 det

[
b2 b3
c2 c3

]
− a2 det

[
b1 b3
c1 c3

]
+ a3 det

[
b1 b2
c1 c2

]
. (1.6.20)

Similar to the 2× 2 case, we have V = |det(M)|.
Example We have

det




2 3 9
2 1 −4
5 1 −1


 = 2 det

[
1 −4
1 −1

]
− 3 det

[
2 −4
5 −1

]
+ 9 det

[
2 1
5 1

]

= 2(−1 + 4)− 3(−2 + 20) + 9(2− 5)

= 6− 54− 27

= −75.

Given an n× n matrix M = [aij ], let Mij be the (n− 1)× (n− 1) matrix obtained by
deleting the ith row and jth column of M . If for n = 1 we first define det(M) = a11 (that
is, the determinant of a 1 × 1 matrix is just the value of its single entry), then we could
express, for n = 2, the definition of a the determinant of a 2 × 2 matrix given in (1.6.18)
in the form

det(M) = a11 det(M11)− a12 det(M12) = a11a22 − a12a21. (1.6.21)

Similarly, with n = 3, we could express the definition of the determinant of M given in
(1.6.20) in the form

det(M) = a11 det(M11)− a12 det(M12) + a13 det(M13). (1.6.22)

Following this pattern, we may form a recursive definition for the determinant of an n×n
matrix.
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Definition SupposeM = [aij ] is an n×nmatrix and letMij be the (n−1)×(n−1) matrix
obtained by deleting the ith row and jth column of M , i = 1, 2, . . . , n and j = 1, 2, . . . , n.
For n = 1, we define the determinant of M , denoted det(M), by

det(M) = a11. (1.6.23)

For n > 1, we define the determinant of M , denoted det(M), by

det(M) = a11 det(M11)− a12 det(M12) + · · ·+ (−1)1+na1n det(M1n)

=

n∑

j=1

(−1)1+ja1j det(M1j).
(1.6.24)

We call the definition recursive because we have defined the determinant of an n × n
matrix in terms of the determinants of (n−1)× (n−1) matrices, which in turn are defined
in terms of the determinants of (n−2)× (n−2) matrices, and so on, until we have reduced
the problem to computing the determinants of 1× 1 matrices.

Example For an example of the determinant of a 4× 4 matrix, we have

det




2 1 3 2
2 1 4 1
−2 3 −1 2

1 2 1 1


 = 2 det




1 4 1
3 −1 2
2 1 1


− det




2 4 1
−2 −1 2

1 11 1




+ 3 det




2 1 1
−2 3 2

1 2 1


− 2 det




2 1 4
−2 3 −1

1 2 1




= 2((−1− 2)− 4(3− 4) + (3 + 2))− (2(−1− 2)

− 4(−2− 2) + (−2 + 1)) + 3(2(3− 4)− (−2− 2)

+ (−4− 3))− 2(2(3 + 2)− (−2 + 1) + 4(−4− 3))

= 2(−3 + 4 + 5)− (−6 + 16− 1) + 3(−2 + 4− 7)

− 2(10 + 1− 28)

= 12− 9− 15 + 34

= 22.

The next theorem states that there is nothing special about using the first row of the
matrix in the expansion of the determinant specified in (1.6.24), nor is there anything
special about expanding along a row instead of a column. The practical effect is that we
may compute the determinant of a given matrix expanding along whichever row or column
is most convenient. The proof of this theorem would take us too far afield at this point,
so we will omit it (but you will be asked to verify the theorem for the special cases n = 2
and n = 3 in Problem 10).
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Theorem Let M = [aij ] be an n×n matrix and let Mij be the (n− 1)× (n− 1) matrix
obtained by deleting the ith row and jth column of M . Then for any i = 1, 2, . . . , n,

det(M) =

n∑

j=1

(−1)i+jaij det(Mij), (1.6.25)

and for any j = 1, 2, . . . , n,

det(M) =

n∑

i=1

(−1)i+jaij det(Mij), (1.6.26)

Example The simplest way to compute the determinant of the matrix

M =




4 0 3
2 3 1
−3 0 −2




is to expand along the second column. Namely,

det(M) = (−1)1+2(0) det

[
2 1
−3 −2

]
+ (−1)2+2(3) det

[
4 3
−3 −2

]

+ (−1)3+2(0) det

[
4 3
2 1

]

= 3(−8 + 9)

= 3.

You should verify that expanding along the first row, as we did in the definition of the
determinant, gives the same result.

In order to return to the problem of computing volumes, we need to define a paral-
lelepiped in Rn. First note that if P is a parallelogram in R2 with adjacent sides given by
the vectors a and b, then

P = {y : y = ta + sb, 0 ≤ t ≤ 1, 0 ≤ s ≤ 1}. (1.6.27)

That is, for 0 ≤ t ≤ 1, ta is a point between 0 and a, and for 0 ≤ s ≤ 1, sb is a point
between 0 and b; hence ta + sb is a point in the parallelogram P . Moreover, every point
in P may be expressed in this form. See Figure 1.6.2. The following definition generalizes
this characterization of parallelograms.

Definition Let a1,a2, . . . ,an be linearly independent vectors in Rn. We call

P = {y : y = t1a1 + t2a2 + · · ·+ tnan, 0 ≤ ti ≤ 1, i = 1, 2, . . . , n} (1.6.28)

an n-dimensional parallelepiped with adjacent edges a1,a2, . . . ,an.
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b

a

a + b

a +   b

a

b

t

t s

s

Figure 1.6.2 A parallelogram in R2 with adjacent sides a and b

Definition Let P be an n-dimensional parallelepiped with adjacent edges a1,a2, . . . ,an
and let M be the n × n matrix which has a1,a2, . . . ,an for its rows. Then the volume of
P is defined to be |det(M)|.

It may be shown, using (1.6.26) and induction, that if N is the matrix obtained by
interchanging the rows and columns of an n × n matrix M , then det(N) = det(M) (see
Problem 12). Thus we could have defined M in the previous definition using a1,a2, . . . ,an
for columns rather than rows.

Now suppose L : Rn → Rn is linear and let M be the n× n matrix such that L(x) =
Mx for all x in Rn. Let C be the n-dimensional parallelepiped with adjacent edges
e1, e2, . . . , en, the standard basis vectors for Rn. Then C is a 1 × 1 square when n = 2
and a 1× 1× 1 cube when n = 3. In general, we may think of C as an n-dimensional unit
cube. Note that the volume of C is, by definition,

det




1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




= 1.

Suppose L(e1), L(e2), . . . , L(en) are linearly independent and let P be the n-dimensional
parallelepiped with adjacent edges L(e1), L(e2), . . . , L(en). Note that if

x = t1e1 + t2e2 + · · ·+ tnen,

where 0 ≤ tk ≤ 1 for k = 1, 2, . . . , n, is a point in C, then

L(x) = t1L(e1) + t2L(e2) + · · ·+ tnL(en)
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is a point in P . In fact, L maps the n-dimensional unit cube C exactly onto the n-
dimensional parallelepiped P . Since L(e1), L(e2), . . . , L(en) are the columns of M , it
follows that the volume of P equals |det(M)|. In other words, |det(M)| measures how
much L stretches or shrinks the volume of a unit cube.

Theorem Suppose L : Rn → Rn is linear and M is the n × n matrix such that
L(x) = Mx. If L(e1), L(e2), . . . , L(en) are linear independent and P is the n-dimensional
parallelepiped with adjacent edges L(e1), L(e2), . . . , L(en), then the volume of P is equal
to |det(M)|.

Problems

1. Let M =




2 3
−2 1

4 −1


 and N =




3 −2
1 0
2 −5


. Evaluate the following.

(a) 3M (b) M −N
(c) 2M +N (d) 2N − 6M

2. Evaluate the following matrix products.

(a)

[
3 2
−1 1

] [
2
3

]
(b)

[
2 −3
1 4

] [
1 4
2 −2

]

(c)

[
2 1 3
−3 2 1

]


3 4 −1
0 2 4
2 1 −2


 (d) [ 1 2 3 −1 ]




2 1
3 1
−2 4

0 −4




3. Suppose L : R3 → R3 and K : R3 → R3 are defined by

L(x, y, z) = (2x+ 3y, y − x+ 2z, x+ 2y − z)

and
K(x, y, z) = (2x+ 4y − 3z, x+ y + z, 3x− y + 4z).

Find the matrices for the following linear functions.

(a) 3L (b) L+K

(c) 2L−K (d) K + 2L

(e) K ◦ L (f) L ◦K
4. Let Rθ : R2 → R2 be the linear function which rotates a vector in R2 counterclockwise

through an angle θ. In Section 1.5 we saw that

Rθ(x, y) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
.

Show that the matrix for Rθ ◦Rα is the same as the matrix for Rθ+α. In other words,
show that Rθ ◦Rα = Rθ+α.
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5. Compute the determinants of the following matrices.

(a)

[
2 3
1 4

]
(b)

[
−3 −2

1 2

]

(c)




2 3 1
1 2 9
5 −3 −1


 (d)



−1 2 −1

3 1 0
5 −4 0




(e)




1 2 −1 3
4 3 −2 1
1 4 −4 3
1 3 3 1


 (f)




1 2 −2 3 1
0 2 0 2 0
−3 2 0 1 5

1 5 −2 1 0
6 −5 0 2 −4




6. Find the area of the parallelogram in R2 with vertices at (1,−2), (3,−1), (4, 1), and
(2, 0).

7. Find the volume of the parallelepiped in R3 with bottom vertices at (1, 1, 1), (2, 3, 2),
(−1, 4, 3), and (−2, 2, 2) and top vertices at (1, 0, 5), (2, 2, 6), (−1, 3, 7), and (−2, 1, 6).

8. Let P be the 4-dimensional parallelepiped with adjacent edges a1 = (2, 1, 2, 1), a2 =
(−2, 0, 1, 1), a3 = (1, 1, 3, 6), and a4 = (−3, 1, 5, 0). Find the volume of P .

9. Find 2× 2 matrices A and B for which AB 6= BA.

10. Verify that (1.6.25) and (1.6.26) hold for all 2× 2 and 3× 3 matrices.

11. An n × n matrix M = [aij ] is called a diagonal matrix if aij = 0 for all i 6= j. Show
that if M is a diagonal matrix, then det(M) = a11a22 · · · ann.

12. If M is an n ×m matrix, then the m × n matrix MT whose columns are the rows of
M is called the transpose of M . For example, if

M =




1 2
3 4
5 6


 ,

then

MT =

[
1 3 5
2 4 6

]
.

(a) Show that for a 2× 2 matrix M , det(MT ) = det(M).

(b) Show that for a 3×3 matrix M , det(MT ) = det(M). (Hint: Using (1.6.26), expand
det(M) along the first row and det(MT ) along the first column.)

(c) Use induction to show that for any n × n matrix M , det(MT ) = det(M). (Hint:
Note that (MT )ij = (Mji)

T .)

13. Let x = (x1, x2, x3) and y = (y1, y2, y3) be vectors in R3 and let e1, e2, and e3 be the
standard basis vectors for R3. Show that applying (1.6.20) to the array




e1 e2 e3

x1 x2 x3

y1 y2 y3
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yields x× y. Discuss what is correct and what is incorrect about the statement

x× y = det




e1 e2 e3

x1 x2 x3

y1 y2 y3


 .

14. Show that the set of all points x = (x, y, z) in R3 which satisfy the equation

det



x y z
1 2 −1
3 1 2


 = 0

is a plane passing through the points (0, 0, 0), (1, 2,−1), and (3, 1, 2).

15. Verify directly that if L : Rm → Rp and K : Rp → Rn are linear functions, then
K ◦ L : Rm → Rn is also a linear function.



Several Variables

The Calculus of Functions

of
Section 2.1

Curves

Now that we have a basic understanding of the geometry of Rn, we are in a position
to start the study of calculus of more than one variable. We will break our study into
three pieces. In this chapter we will consider functions f : R → Rn, in Chapter 3 we will
study functions f : Rn → R, and finally in Chapter 4 we will consider the general case of
functions f : Rm → Rn.

Parametrizations of curves

We begin with some terminology and notation. Given a function f : R→ Rn, let

fk(t) = kth coordinate of f(t) (2.1.1)

for k = 1, 2, . . . , n. We call fk : R→ R the kth coordinate function of f . Note that fk has
the same domain as f and that, for any point t in the domain of f ,

f(t) = (f1(t), f2(t), . . . , fn(t). (2.1.2)

If the domain of f is an interval I, then the range of f , that is, the set

C = {x : x = f(t) for some t in I}, (2.1.3)

is called a curve with parametrization f . The equation x = f(t), where x is in Rn, is a
vector equation for C and, writing x = (x1, x2, . . . , xn), the equations

x1 = f1(t),

x2 = f2(t),

...
...

xn = fn(t),

(2.1.4)

are parametric equations for C.

Example Consider f : R→ R2 defined by

f(t) = (cos(t), sin(t))

for 0 ≤ t ≤ 2π. Then for every value of t, f(t) is a point on the circle C of radius 1 with
center at (0, 0). Note that f(0) = (1, 0), f

(
π
2

)
= (0, 1), f(π) = (−1, 0), f

(
3π
2

)
= (0,−1),

1 Copyright c© by Dan Sloughter 2001
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Figure 2.1.1 f(t) = (cos(t), sin(t)

and f(2π) = (1, 0) = f(0). In fact, as t goes from 0 to 2π, f(t) traverses C exactly once
in the counterclockwise direction. Thus f is a parametrization of the unit circle C. If we
denote a point in R2 by (x, y), then

x = cos(t),

y = sin(t),

are parametric equations for C. See Figure 2.1.1. The coordinate functions are

f1(t) = cos(t),

f2(t) = sin(t),

although we frequently write these as simply

x(t) = cos(t),

y(t) = sin(t).

Example Consider g : R→ R2 defined by

g(t) = (sin(2πt), cos(2πt))

for 0 ≤ t ≤ 2. Then g also parametrizes the unit circle C centered at the origin, the same
as f in the previous example. However, there is a difference: g(0) = (0, 1), g

(
1
4

)
= (1, 0),
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-a a

b

-b

Figure 2.1.2 The ellipse x2

a2 + y2

b2 = 1

g
(

1
2

)
= (0,−1), g

(
3
4

)
= (−1, 0), and g(1) = (0, 1) = g(0), at which point g starts to repeat

its values. Hence g(t), starting at (0, 1), traverses C twice in the clockwise direction as t
goes from 0 to 2.

Example More generally, suppose a, b, and α are real numbers, with a > 0, b > 0, and
α 6= 0, and let

x(t) = a cos(αt),

y(t) = b sin(αt).

Then
(x(t))2

a2
+

(y(t))2

b2
= cos2(αt) + sin2(αt) = 1,

so (x(t), y(t)) is a point on the ellipse E with equation

x2

a2
+
y2

b2
= 1,

shown in Figure 2.1.2. Thus the function

f(t) = (a cos(αt), b cos(αt))

parametrizes the ellipse E, traversing the complete ellipse as t goes from 0 to
∣∣ 2π
α

∣∣.
Example Define f : R→ R2 by

f(t) = (t cos(t), t sin(t))

for −∞ < t < ∞. Then for negative values of t, f(t) spirals into the origin as t in-
creases, while for positive values of t, f(t) spirals away from the origin. Part of this curve
parametrized by f is shown in Figure 2.1.3.
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Figure 2.1.3 The spiral f(t) = (t cos(t), t sin(t)) for −4π ≤ t ≤ 4π

Example Define f : R→ R2 by

f(t) = (3− 4t, 2 + 3t)

for −∞ < t <∞. Then
f(t) = t(−4, 3) + (3, 2),

so f is a parametrization of the line through the point (3, 2) in the direction of (−4, 3).

In general, a function f : R → Rn defined by f(t) = tv + p, where v 6= 0 and p are
vectors in Rn, parametrizes a line in Rn.

Example Suppose g : R→ R3 is defined by

g(t) = (4 cos(t), 4 sin(t), t)

for −∞ < t <∞. If we denote the coordinate functions by

x(t) = 4 cos(t),

y(t) = 4 sin(t),

z(t) = t,

then
(x(t))2 + (y(t))2 = 16 cos2(t) + 16 sin2(t) = 16.

Hence g(t) always lies on a cylinder of radius 1 centered about the z-axis. As t increases,
g(t) rises steadily as it winds around this cylinder, completing one trip around the cylinder



Section 2.1 Curves 5

-4 -2 0 2 4

x

-4
-2

0
2

4

y

-5

0

5

z

-4
-2

0
2

4

y

Figure 2.1.4 The helix f(t) = (4 cos(t), 4 sin(t), t), −2π ≤ t ≤ 2π

over every interval of length 2π. In other words, g parametrizes a helix, part of which is
shown in Figure 2.1.4.

Limits in Rn

As was the case in one-variable calculus, limits are fundamental for understanding ideas
such as continuity and differentiability. We begin with the definition of the limit of a
sequence of points in Rm.

Definition Let {xn} be a sequence of points in Rm. We say that the limit of {xn} as n
approaches infinity is a, written lim

n→∞
xn = a, if for every ε > 0 there is a positive integer

N such that
‖xn − a‖ < ε (2.1.5)

whenever n > N .

Notice that this definition involves only a slight modification of the definition for the
limit of a sequence of real numbers, namely, the use of the norm of a vector instead of the
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0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

Figure 2.1.5 Points
(
1− 1

n ,
2
n

)
approaching (1, 0)

absolute value of a real number in (2.1.5). In words, lim
n→∞

xn = a if, given any ε > 0 , we

can always find a point in the sequence beyond which all terms of the sequence lie within
Bn(a, ε), the open ball of radius ε centered at a.

Example Suppose

xn =

(
1− 1

n
,

2

n

)

for n = 1, 2, 3, . . .. Since

lim
n→∞

(
1− 1

n

)
= 1

and

lim
n→∞

2

n
= 0,

we should have
lim
n→∞

xn = (1, 0).

To verify this, we first note that

‖xn − (1, 0)‖ =

∥∥∥∥
(
− 1

n
,

2

n

)∥∥∥∥ =

√
1

n2
+

4

n2
=

√
5

n
.

Hence ‖xn− (1, 0)‖ < ε whenever n >
√

5
ε . That is, if we let N be any integer greater than

or equal to
√

5
ε , then ‖xn − (1, 0)‖ < ε whenever n > N , verifying that

lim
n→∞

xn = (1, 0).

See Figure 2.1.5.

Put another way, the definition of the limit of a sequence in Rm says that a sequence
{xn} in Rm converges to a in Rm if and only if the sequence of real numbers {‖xn − a‖}
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converges to 0. That is, lim
n→∞

xn = a if and only if lim
n→∞

‖xn − a‖ = 0. Moreover, if we let

xn = (xn1, xn2, . . . , xnm) and a = (a1, a2, . . . , am), then

‖xn − a‖ =
√

(xn1 − a1)2 + (xn2 − a2)2 + · · ·+ (xnm − am)2, (2.1.6)

so lim
n→∞

‖xn − a‖ = 0 if and only if

lim
n→∞

√
(xn1 − a1)2 + (xn2 − a2)2 + · · ·+ (xnm − am)2 = 0. (2.1.7)

But (2.1.7) can occur only when lim
n→∞

(xnk−ak)2 = 0 for k = 1, 2, . . . ,m. Hence lim
n→∞

xn =

a if and only if lim
n→∞

xnk = ak for k = 1, 2, . . . ,m.

Proposition Suppose {xn} is a sequence in Rm, xn = (xn1, xn2, . . . , xnm), and a =
(a1, a2, . . . , am). Then lim

n→∞
xn = a if and only if lim

n→∞
xnk = ak for k = 1, 2, . . . ,m.

This proposition tells us that to compute the limit of a sequence in Rm, we need only
compute the limit of each coordinate separately, thus reducing the problem of computing
limits in Rm to the problem of finding limits of sequences of real numbers.

Example If

xn =

(
2− n
n2

, sin

(
1

n

)
, cos

(
3

n

))
,

n = 1, 2, 3, . . ., then

lim
n→∞

xn =

(
lim
n→∞

2− n
n2

, lim
n→∞

sin

(
1

n

)
, lim
n→∞

cos

(
3

n

))
= (0, 0, 1).

We may now define the limit of a function f : R→ Rm at a real number c. Notice that
the definition is identical to the definition of a limit for a real-valued function f : R→ R.

Definition Let c be a real number, let I be an open interval containing c, and let
J = {t : t is in I, t 6= c}. Suppose f : R → Rm is defined for all t in J . Then we say that
the limit of f(t) as t approaches c is a, denoted lim

t→c
f(t) = a, if for every sequence of real

numbers {tn} in J ,
lim
n→∞

f(tn) = a (2.1.8)

whenever lim
n→∞

tn = c.

As in one-variable calculus, we may define the limit of f(t) as t approaches c from the
right, denoted

lim
t→c+

f(t),

by restricting to sequences {tn} with tn > c for n = 1, 2, 3, . . ., and the limit of f(t) as t
approaches c from the left, denoted

lim
t→c−

f(t),
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by restricting to sequences {tn} with tn < c for n = 1, 2, 3, . . .. Moreover, the following
useful proposition follows immediately from our definition and the previous proposition.

Proposition Suppose f : R→ Rm with

f(t) = (f1(t), f2(t), . . . , fm(t)).

The for any real number c,

lim
t→c

f(t) = (lim
t→c

f1(t), lim
t→c

f2(t), . . . , lim
t→c

fm(t)). (2.1.9)

Hence the problem of computing limits for functions f : R → Rm reduces to the
problem of computing limits of the coordinate functions fk : R → R, k = 1, 2, . . . ,m, a
familiar problem from one-variable calculus. The analogous statements for limits from the
right and left also hold.

Example If f(t) = (t2 − 1, sin(t), cos(t)) is a function from R to R3, then, for example,

lim
t→π

f(t) =
(

lim
t→π

(t2 − 1), lim
t→π

sin(t), lim
t→π

cos(t)
)

= (π2 − 1, 0,−1).

Definitions for continuity also follow the pattern of the related definitions in one-
variable calculus.

Definition Suppose f : R→ Rm. We say f is continuous at a point c if

lim
t→c

f(t) = f(c). (2.1.10)

We say f is continuous from the right at c if

lim
t→c+

f(t) = f(c) (2.1.11)

and continuous from the left at c if

lim
t→c−

f(t) = f(c). (2.1.12)

We say f is continuous on an open interval (a, b) if f is continuous at every point c in
(a, b) and we say f is continuous on a closed interval [a, b] if f is continuous on the open
interval (a, b), continuous from the right at a, and continuous from the left at b.

If f(t) = (f1(t), f2(t), . . . , fm(t)), then f is continuous at a point c if and only if

lim
t→c

f(t) = (lim
t→c

f1(t), lim
t→c

f2(t), . . . , lim
t→c

fm(t) = f(c) = (f1(c), f2(c), . . . , fm(c)),

which is true if and only if lim
t→c

fk(t) = fk(c) for k = 1, 2, . . . ,m. In other words, we have

the following useful proposition.
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Proposition A function f : R → Rm with f(t) = (f1(t), f2(t), . . . , fm(t)) is continuous
at a point c if and only if the coordinate functions f1, f2, . . . , fm are each continuous at c.

Similar statements hold for continuity from the right and from the left.

Example The function f : R→ R3 defined by

f(t) = (sin(t2), t3 + 4, cos(t))

is continuous on the interval (−∞,∞) since each of its coordinate functions is continuous
on (−∞,∞).

Problems

1. Plot the curves parametrized by the following functions over the specified intervals I.

(a) f(t) = (3t+ 1, 2t− 1), I = [−5, 5]

(b) g(t) = (t, t2), I = [−3, 3]

(c) f(t) = (3 cos(t), 3 sin(t)), I = [0, 2π]

(d) h(t) = (3 cos(t), 3 sin(t)), I = [0, π]

(e) f(t) = (4 cos(2t), 2 sin(2t), I = [0, π]

(f) g(t) = (−4 cos(t), 2 sin(t)), I = [0, π]

(g) h(t) = (t sin(3t), t cos(3t)), I = [−π, π]

2. Plot the curves parametrized by the following functions over the specified intervals I.

(a) f(t) = (t+ 1, 2t− 1, 3t), I = [−4, 4]

(b) g(t) = (cos(t), t, sin(t)), I = [0, 4π]

(c) f(t) = (t cos(2t), t sin(2t), t), I = [−10, 10]

(d) h(t) = (cos(2t), sin(2t),
√
t), I = [0, 9]

3. Plot the curves parametrized by the following functions over the specified intervals I.

(a) f(t) = (cos(4πt), sin(5πt)), I = [−0.5, 0.5]

(b) f(t) = (cos(6πt), sin(7πt)), I = [−0.5, 0.5]

(c) h(t) = (cos3(t), sin3(t)), I = [0, 2π]

(d) g(t) = (cos(2πt), sin(2πt), sin(4πt)), I = [0, 1]

(e) f(t) = (sin(4t) cos(t), sin(4t) sin(t)), I = [0, 2π]

(f) h(t) = ((1 + 2 cos(t)) cos(t), (1 + 2 cos(t)) sin(t)), I = [0, 2π]

4. Suppose g : R → R and we define f : R → R2 by f(t) = (t, g(t)). Describe the curve
parametrized by f .

5. For each of the following, compute lim
n→∞

xn.

(a) xn =

(
n+ 1

2n+ 3
, 3− 1

n

)
(b) xn =

(
sin

(
n− 1

n

)
, cos

(
n− 1

n

)
,
n− 1

n

)
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(c) xn =

(
2n− 1

n2 + 1
,

3n+ 4

n+ 1
, 4− 6

n2
,

6n+ 1

2n2 + 5

)

6. Let f : R→ R3 be defined by

f(t) =

(
sin(t)

t
, cos(t), 3t2

)
.

Evaluate the following.

(a) lim
t→π

f(t) (b) lim
t→1

f(t)

(c) lim
t→0

f(t)

7. Discuss the continuity of each of the following functions.

(a) f(t) = (t2 + 1, cos(2t), sin(3t) (b) g(t) = (
√
t+ 1, tan(t))

(c) f(t) =

(
1

t2 − 1
,
√

1− t2, 1

t

)
(d) g(t) = (cos(4t), 1−

√
3t+ 1, sin(5t), sec(t))

8. Let f : R→ R3 be defined by f(t) = (t2, 3t, 2t+ 1). Find

lim
h→0

f(t+ h)− f(t)

h
.



Several Variables

The Calculus of Functions
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Section 2.2

Best Affine Approximations

In this section we will generalize the basic ideas of the differential calculus of functions
f : R → R to functions f : R → Rn. Recall that given a function f : R → R, we
say f is differentiable at a point c if there exists an affine function A : R → R, A(x) =
m(x− c) + f(c), such that

lim
h→0

f(c+ h)−A(c+ h)

h
= 0. (2.2.1)

We call A the best affine approximation to f at c and m the derivative of f at c, denoted
f ′(c). Moreover, we call the the graph of A, that is, the line with equation

y = f ′(c)(x− c) + f(c), (2.2.2)

the tangent line to the graph of f at (c, f(c)).
The condition (2.2.1) says that the function ϕ(h) = f(c + h) − A(c + h) is o(h). In

general, we say a function ϕ : R→ R is o(h) if

lim
h→0

ϕ(h)

h
= 0. (2.2.3)

Best affine approximations

Generalizing the idea of the best affine approximation to the case of a function f : R→ Rn
requires only a slight modification of the requirement that f(c + h) − A(c + h) be o(h).
Namely, since f(c+h)−A(c+h) is a vector in Rn, we will require that ‖f(c+h)−A(c+h)‖,
instead of f(c+h)−A(c+h), be o(h). If n = 1, this will reduce to the one-variable definition
since, in that case, ‖f(c+h)−A(c+h)‖ = |f(c+h)−A(c+h)| and a function ϕ : R→ R
is o(h) if and only if |ϕ(h)| is o(h).

Definition Suppose f : R → Rn and c is a point in the domain of f . We call an affine
function A : R → Rn the best affine approximation to f at c if (1) A(c) = f(c) and (2)
‖R(h)‖ is o(h), where

R(h) = f(c+ h)−A(c+ h). (2.2.4)

Suppose f : R → Rn and A : R → Rn is an affine function for which A(c) = f(c).
Since A is affine, there exists a linear function L : R→ Rn and a vector b in Rn such that
A(t) = L(t) + b for all t in R. Since we have

f(c) = A(c) = L(c) + b, (2.2.5)

1 Copyright c© by Dan Sloughter 2001
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it follows that b = f(c)− L(c). Hence, for all t in R,

A(t) = L(t) + f(c)− L(c) = L(c− t) + f(c). (2.2.6)

Moreover, if a = L(1), then, from our results in Section 1.5,

A(t) = a(t− c) + f(c). (2.2.7)

Hence

R(h) = f(c+ h)−A(c+ h) = f(c+ h)− f(c)− ah, (2.2.8)

from which it follows that

lim
h→0+

‖R(h)‖
h

= lim
h→0+

‖f(c+ h)− f(c)− ah‖
h

= lim
h→0+

∥∥∥∥
f(c+ h)− f(c)− ah

h

∥∥∥∥

= lim
h→0+

∥∥∥∥
f(c+ h)− f(c)

h
− a

∥∥∥∥

(2.2.9)

Thus

lim
h→0+

‖R(h)‖
h

= 0

if and only if

lim
h→0+

f(c+ h)− f(c)

h
= a.

A similar calculation from the left shows that

lim
h→0−

‖R(h)‖
h

= 0

if and only if

lim
h→0−

f(c+ h)− f(c)

h
= a.

Hence

lim
h→0

‖R(h)‖
h

= 0 (2.2.10)

if and only if

lim
h→0

f(c+ h)− f(c)

h
= a. (2.2.11)

That is, A is the best affine approximation to f at c if and only if, for all t in R,

A(t) = a(t− c) + f(c), (2.2.12)
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where

a = lim
h→0

f(c+ h)− f(c)

h
. (2.2.13)

Definition Suppose f : R→ Rn. If

lim
h→0

f(c+ h)− f(c)

h
(2.2.14)

exists, then we say f is differentiable at c and we call

Df(c) = lim
h→0

f(c+ h)− f(c)

h
(2.2.15)

the derivative of f at c.

Note that (2.2.15) is the same as the formula for the derivative in one-variable calcu-
lus. In fact, in the case n = 1, (2.2.15) is just the derivative from one-variable calculus.
However, if n > 1, then Df(c) will be a vector, not a scalar.

The following theorem summarizes our work above.

Theorem Suppose f : R → Rn and c is a point in the domain of f . Then f has a best
affine approximation A : R→ Rn at c if and only if f is differentiable at c, in which case

A(t) = Df(c)(t− c) + f(c). (2.2.16)

We saw in Section 2.1 that a limit of a vector-valued function f may be computed by
evaluating the limit of each coordinate function separately. This result has an important
consequence for computing derivatives. Suppose f : R → Rn is differentiable at c. If we
write

f(t) = (f1(t), f2(t), . . . , fn(t),

then

Df(c) = lim
h→0

f(c+ h)− f(c)

h

= lim
h→0

1

h
((f1(c+ h), f2(c+ h), . . . , fn(c+ h)− (f1(c), f2(c), . . . , fn(c))

= lim
h→0

(
f1(c+ h)− f1(c)

h
,
f2(c+ h)− f2(c)

h
, . . . ,

fn(c+ h)− fn(c)

h

)

=

(
lim
h→0

f1(c+ h)− f1(c)

h
, lim
h→0

f2(c+ h)− f2(c)

h
, . . . , lim

h→0

fn(c+ h)− fn(c)

h

)

= (f ′1(c), f ′2(c), . . . , f ′n(c)).

In words, the derivative of f is the vector whose coordinates are the derivatives of the
coordinate functions of f , reducing the problem of differentiating vector-valued functions
to the problem of differentiation in single-variable calculus.
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Proposition If f is differentiable at c and f(t) = (f1(t), f2(t), . . . , fn(t0)), then each
coordinate function fk, k = 1, 2, . . . , n, is differentiable at c and

Df(c) = (f ′1(c), f ′2(c), . . . , f ′n(c)). (2.2.17)

For an arbitrary point t at which f is differentiable, we will write,

Df(t) = lim
h→0

f(t+ h)− f(t)

h
= (f ′1(t), f ′2(t), . . . , f ′n(t)). (2.2.18)

That is, we may think of Df as a vector-valued function itself, with domain being the set
of points at which f is differentiable.

Now suppose f : R→ Rn parametrizes a curve C and is differentiable at c. If Df(c) 6=
0, then the best affine approximation

A(t) = Df(c)(t− c) + f(c)

parametrizes a line, a line which best approximates the curve C for points near f(c). On
the other hand, if Df(c) = 0, then A is a constant function with range consisting of the
single point f(c). These considerations motivate, in part, the following definitions.

Definition Suppose f : R→ Rn is differentiable on (a, b) and x = f(t) is a parametriza-
tion of a curve C for a < t < b. If Df(t) is continuous and Df(t) 6= 0 for all t in (a, b),
then we call f a smooth parametrization of C.

Definition Suppose f : R → Rn parametrizes a curve C in Rn and let A be the best
affine approximation to f at c. If f is smooth on some open interval containing c, then we
call the line in Rn parametrized by A the tangent line to C at f(c).

Example Define f : R → Rn by f(t) = (cos(t), sin(t)) for −∞ < t < ∞. Then, as we
saw in Section 2.1, f parametrizes the unit circle C centered at the origin. Now

Df(t) = (− sin(t), cos(t)),

so Df(t) is continuous and ‖Df(t)‖ = 1 for all t. Thus f is a smooth parametrization of
C. For example,

Df
(π

6

)
=

(
−1

2
,

√
3

2

)

and

f
(π

6

)
=

(√
3

2
,

1

2

)
,

so the best affine approximation to f at t = π
6 is

A(t) =

(
−1

2
,

√
3

2

)(
t− π

6

)
+

(√
3

2
,

1

2

)
.

Figure 2.2.1 shows C along with the tangent line to C at t = π
6 .
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Figure 2.2.1 Unit circle with tangent line at
(√

3
2 ,

1
2

)

Example Suppose we define g : R → R2 by g(t) = (sin(2πt), cos(2πt)), −∞ < t < ∞.
Then, as we saw in Section 2.1, g parametrizes the same circle C as f in the previous
example. Moreover,

Dg(t) = (2π cos(2πt),−2π sin(2πt))

and ‖Dg(t)‖ = 1 for all t, so g is a smooth parametrization of C. However,

g

(
1

6

)
=

(√
3

2
,

1

2

)
= f

(π
6

)
;

that is, g(t) is at
(√

3
2 ,

1
2

)
when t = 1

6 , whereas f(t) is at
(√

3
2 ,

1
2

)
when t = π

6 . Moreover,

Dg

(
1

6

)
= (π,−π

√
3),

so the best affine approximation to g at t = 1
6 is

B(t) = (π,−π
√

3)

(
t− 1

6

)
+

(√
3

2
,

1

2

)
.

Note that although A, the best affine approximation to f at t = π
6 , and B, the best affine

approximation to g at t = 1
6 , are different functions, they parametrize the same line since

(π,−π
√

3) = −2π

(
−1

2
,

√
3

2

)
.
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Figure 2.2.2 Helix with tangent line at
(
2
√

2, 2
√

2, π4
)

Example Consider the helix C parametrized by f : R→ R3 defined by

f(t) = (4 cos(t), 4 sin(t), t).

Then
Df(t) = (−4 sin(t), 4 cos(t), 1).

Since Df is continuous and

‖Df(t)‖ =

√
16 sin2(t) + 16 cos2(t) + 1 =

√
17

for all t, f is a smooth parametrization of C. Now, for example,

Df
(π

4

)
=

(
− 4√

2
,

4√
2
, 1

)
= (−2

√
2, 2
√

2, 1)

and

f
(π

4

)
=

(
4√
2
,

4√
2
,
π

4

)
=
(

2
√

2, 2
√

2,
π

4

)
,

so the best affine approximation to f at t = π
4 is

A(t) = (−2
√

2, 2
√

2, 1)
(
t− π

4

)
+
(

2
√

2, 2
√

2,
π

4

)
.

The helix C and the line parametrized by A, namely, the tangent line to C at t = π
4 , are

shown in Figure 2.2.2.
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Figure 2.2.3 h(t) = (cos3(t), sin3(t)) with tangent line at
(
− 1

2
√

2
, 1

2
√

2

)

Example Let C be the curve in R2 parametrized by

h(t) = (cos3(t), sin3(t)).

Then
Dh(t) = (−3 cos2(t) sin(t), 3 sin2(t) cos(t)).

HenceDh is continuous for all t, but h is not a smooth parametrization of C sinceDh(t) = 0
whenever t is an integer multiple of π

2 . These points correspond to the sharp corners of
C at (1, 0), (0, 1), (−1, 0, and (0,−1), as shown in Figure 2.2.3. However, h is a smooth
parametrization of the four arcs of C which are parametrized by restricting h to the open
intervals

(
0, π2

)
,
(
π
2 , π

)
,
(
π, 3π

2

)
, and

(
3π
2 , 2π

)
. Hence, for example, noting that

Dh

(
3π

4

)
=

(
− 3

2
√

2
,− 3

2
√

2

)

and

h

(
3π

4

)
=

(
− 1

2
√

2
,

1

2
√

2

)
,

we find that the best affine approximation to h at t = 3π
4 is

A(t) =

(
− 3

2
√

2
,− 3

2
√

2

)(
t− 3π

4

)
+

(
− 1

2
√

2
,

1

2
√

2

)
.

The tangent line parametrized by A is shown in Figure 2.2.3.
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Proposition Suppose f : R → Rn, g : R → Rn, and ϕ : R → R are all differentiable.
Then

D(f(t) + g(t)) = Df(t) +Dg(t), (2.2.19)

D(f(t)− g(t)) = Df(t)−Dg(t), (2.2.20)

D(ϕ(t)f(t)) = ϕ(t)Df(t) + ϕ′(t)f(t), (2.2.21)

d

dt
(f(t) · g(t)) = f(t) ·Dg(t) +Df(t) · g(t), (2.2.22)

and
D(f(ϕ(t)) = Df(ϕ(t))ϕ′(t)). (2.2.23)

Note that all of the statements in this proposition reduce to familiar results from
one-variable calculus when n = 1. To verify these results, let

f(t) = (f1(t), f2(t), . . . , fn(t))

and
g(t) = (g1(t), g2(t), . . . , gn(t)).

Then

D(f(t) + g(t)) = D(f1(t) + g1(t), f2(t) + g2(t), . . . , fn(t) + gn(t))

= (f ′1(t) + g′1(t), f ′2(t) + g′2(t), . . . , f ′n(t) + g′n(t))

= (f ′1(t), f ′2(t), . . . , f ′n(t)) + (g′1(t), g′2(t), . . . , g′n(t))

= Df(t) +Dg(t),

(2.2.24)

verifying (2.2.19). The verification of (2.1.20) is similar. The demonstrations of (2.2.21)
and (2.1.22), both of which are generalizations of the product rule from one-variable calcu-
lus, follow easily from that result; we will check (2.1.22) here and leave (2.2.21) for Problem
13. Using the product rule, we have

d

dt
(f(t) · g(t)) =

d

dt
(f1(t)g1(t) + f2(t)g2(t) + · · ·+ fn(t)gn(t))

= f1(t)g′1(t) + f ′1(t)g1(t) + f2(t)g′2(t) + f ′2(t)g2(t) + · · ·
+ fn(t)g′n(t) + f ′n(t)gn(t)

= f(t) ·Dg(t) +Df(t) · g(t).

(2.2.25)

Finally, (2.2.23), a generalization of the chain rule from one-variable calculus, follows
directly from that result:

D(f(ϕ(t))) = D(f1(ϕ(t)), f2(ϕ(t)), . . . , fn(ϕ(t)))

= (f ′1(ϕ(t))ϕ′(t), f ′2(ϕ(t))ϕ′(t), . . . , f ′n(ϕ(t))ϕ′(t))

= Df(ϕ(t))ϕ′(t).

(2.2.26)
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Reparametrizations

We have seen above that the parametrization of a curve C in Rn is not unique. For example,
we saw that both f(t) = (cos(t), sin(t)) and g(t) = (sin(2πt), cos(2πt)) parametrize the unit
circle centered at the origin. However, we also noted that the best affine approximations
for the two parametrizations, although distinct functions, nevertheless parametrize the

same line at
(√

3
2 ,

1
2

)
, the line we have been calling the tangent line. We should suspect

that this will be the case in general, that is, the tangent line to a curve C at a particular
point should not depend on the particular parametrization of C used in the computation.
While avoiding some technicalities, we will provide some justification for these ideas.

Definition Suppose x = f(t), a < t < b, is a smooth parametrization of a curve C in
Rn. Suppose ϕ : R→ R has domain (c, d), range (a, b), and ϕ′ exists and is continuous on
(c, d). If ϕ′(t) 6= 0 for all t in (c, d), then we call g(t) = f(ϕ(t)) a reparametrization of f .

Example Let f(t) = (cos(t), sin(t)) and g(t) = (sin(2πt), cos(2πt)). Since

sin(t) = cos
(π

2
− t
)

and
cos(t) = sin

(π
2
− t
)
,

if follows that
g(t) = f

(π
2
− 2πt

)
= f(ϕ(t)),

where
ϕ(t) =

π

2
− 2πt.

That is, g is a reparametrization of f .

Now if x = f(t), a < t < b, is a smooth parametrization of a curve C in Rn and
g(t) = f(ϕ(t)), c < t < d, is a reparametrization of f , then for any α in (c, d),

Dg(α) = D(f(ϕ(α)) = Df(ϕ(α))ϕ′(α). (2.2.27)

Hence Dg(α) and Df(ϕ(α)) are parallel, the former being the latter multiplied by the
scalar ϕ′(α). In other words, the lines parametrized by the best affine approximation to g
at t = α and the best affine approximation to f at t = ϕ(α) are the same.

Example In our previous example, we have

ϕ′(t) = −2π,

so, for any α, we should have

Dg(α) = −2πDf(ϕ(α)).

This agrees with our previous calculation using α = 1
6 .
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Tangent and normal vectors

If f : R → Rn is a smooth parametrization of a curve C, then, for any t, Df(t) is the
direction of the tangent line to C at f(t). Moreover, from our discussion above, if g is a
reparametrization of f , say, g(t) = f(ϕ(t)), then Dg(t) and Df(ϕ(t)) will have the same
or opposite direction. In other words, the direction of the tangent line either remains the
same or is reversed under reparametrization. On the other hand,

‖Dg(t)‖ = ‖Df(ϕ(t))‖|ϕ′(t)|. (2.2.28)

As we should expect, although both Dg(t) and Df(ϕ(T )) are tangent to the curve at g(t),
their lengths do not have to be the same. In Section 2.3 we will discuss how we may think
of this in terms of the speed of a particle moving along the curve C, with its position on
C at time t given by either g(t) or f(t).

For these and other considerations, it is useful to define a standard tangent vector,
unique up to a change in sign.

Definition If f : R→ Rn is a smooth parametrization of a curve C, then we call

T (t) =
Df(t)

‖Df(t)‖ (2.2.29)

the unit tangent vector to C at f(t).

From the preceding, we must keep in mind that the unit tangent vector T (t) is always
in reference to some parametrization f of the curve C. Essentially, this is a choice of an
orientation for the curve, that is, the direction of motion for a particle whose position at
time t is given by f(t).

If x = f(t), a < t < b, is a smooth parametrization of a curve C in Rn, then, by
definition, ‖T (t)‖ = 1 for all t in (a, b). Hence

T (t) · T (t) = 1 (2.2.30)

for all t in (a, b). Differentiating (2.2.30), we have

d

dt
(T (t) · T (t)) =

d

dt
1 = 0, (2.2.31)

and so, using (2.2.22), we have

0 =
d

dt
(T (t) · T (t)) = T (t) ·DT (t) +DT (t) · T (t) = 2DT (t) · T (t) (2.2.32)

for all t in (a, b). Thus T (t) ·DT (t) = 0 for a < t < b. In other words, DT (t) is orthogonal
to T (t) for all t in (a, b).
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Definition If f : R → Rn is a smooth parametrization of a curve C, T (t) is the unit
tangent vector to C at f(t), and DT (t) 6= 0, then we call

N(t) =
DT (t)

‖DT (t)‖ (2.2.33)

the principal unit normal vector to C at f(t).

Example Consider the parametrization of the circle in R2 with radius 2 and center at
the origin given by

f(t) = (2 cos(4t), 2 sin(4t)).

Then

Df(t) = (−8 sin(4t), 8 cos(4t))

and

‖Df(t)‖ =

√
64 sin2(4t) + 64 cos2(4t) = 8.

Thus the unit tangent vector is

T (t) =
Df(t)

‖Df(t)‖ = (− sin(4t), cos(4t)).

Moreover,

DT (t) = (−4 cos(t),−4 sin(4t)),

so

‖DT (t)‖ =

√
16 cos2(4t) + 16 sin2(4) = 4,

and the principal unit normal vector is

N(t) =
DT (t)

‖DT (t)‖ = (− cos(4t),− sin(4t)).

For example, when t = π
24 we have

f
( π

24

)
= (
√

3, 1),

T
( π

24

)
=

(
−1

2
,

√
3

2

)
,

and

N
( π

24

)
=

(
−
√

3

2
,−1

2

)
.
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-2 -1 1 2

-2

-1

1

2

Figure 2.2.4 A circle with unit tangent and normal vectors

Note that, for any value of t, f(t) ⊥ T (t), T (t) ⊥ N(t) (as is always the case), and
N(t) = −1

2f(t). See Figure 2.2.4.

Example Consider the elliptical helix H parametrized by

g(t) = (cos(t), 2 sin(t), t).

Then
Dg(t) = (− sin(t), 2 cos(t), 1),

so

‖Dg(t)‖ =

√
sin2(t) + 4 cos2(t) + 1

=

√
sin2(t) + cos2(t) + 3 cos2(t) + 1

=
√

2 + 3 cos2(t)

=

√
2 +

3

2
(1 + cos(2t))

=

√
7 + 3 cos(2t)

2
.

Hence the unit tangent vector is

T (t) =

√
2

7 + 3 cos(2t)
(− sin(t), 2 cos(t), 1).
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Figure 2.2.5 An elliptical helix with unit tangent and normal vectors

Differentiating using (2.2.21), we have

DT (t) =

√
2

7 + 3 cos(2t)
(− cos(t),−2 sin(t), 0)

+
1

2

(
2

7 + 3 cos(2t)

)− 1
2
(

12 sin(2t)

(7 + 3 cos(2t))2

)
(− sin(t), 2 cos(t), 1)

=

√
2

7 + 3 cos(2t)
(− cos(t),−2 sin(t), 0) +

3
√

2 sin(2t)

(7 + 3 cos(2t))
3
2

(− sin(t), 2 cos(t), 1).

For example, at t = π
4 we have

g
(π

4

)
=

(
1√
2
,
√

2,
π

4

)
,

T
(π

4

)
=

1√
7

(−1, 2,
√

2),

and

DT
(π

4

)
=

1√
7

(−1,−2, 0) +
3

7
3
2

(−1, 2,
√

2) =
1

7
√

7
(−10,−8, 3

√
2).
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Thus ∥∥∥DT
(π

4

)∥∥∥ =
1

7
√

7

√
100 + 64 + 18 =

√
26

7
,

so the principal unit normal vector at t = π
4 is

N
(π

4

)
=

DT
(
π
4

)
∥∥DT

(
π
4

)∥∥ =
1√
182

(−10,−8, 3
√

2).

See Figure 2.2.5.

As the last example shows, the computations involved in finding the unit tangent
vector and the principal unit normal vector can become involved. In fact, that is why
we computed the principal unit normal vector only in the particular case t = π

4 instead
of writing out the general formula for N(t). In general these computations can become
involved enough that it is often wise to make use of a computer algebra system.

Problems

1. Find the derivative of each of the following functions.

(a) f(t) = (t3, t, 2t+ 4) (b) g(t) = (3t cos(2t), 4t sin(2t))

(c) h(t) = (4t3 − 3, sin(t), e−2t) (d) f(t) = (e−t sin(3t), e−t cos(3t), te−t)

2. For each of the following, find the best affine approximation to f at the given point.

(a) f(t) = (t, t3), t = 2 (b) f(t) = (3 sin(2t), 4 cos(2t)), t =
π

6

(c) f(t) = (cos(t), sin(t), cos(2t)), t =
π

3
(d) f(t) = (2 cos(2t), 3 sin(2t), 3t), t = 0

3. Let f(t) = (2 cos(πt), 3 sin(πt)) parametrize an ellipse E in R2. Plot E along with the
tangent line at f

(
2
3

)
.

4. Let f(t) = ((1 + 2 cos(t)) cos(t), (1 + 2 cos(t)) sin(t)) parametrize a curve C in R2. Plot
C along with the tangent line at f

(
π
6

)
.

5. Let h(t) =
(
sin(2πt), cos(2πt), t2

)
parametrize a circular helix H in R3. Plot H along

with the tangent line at h
(

3
2

)
.

6. Let g(t) = (cos(πt),
√
t, sin(πt)) parametrize a curve C in R3. Plot C along with the

tangent line at g
(

1
4

)
.

7. Suppose f : R → R2 is defined by f(t) = (t, ϕ(t)), where ϕ : R → R is differentiable,
and let C be the curve in R2 parametrized by f . Show that the tangent line to C at
f(c) is the same as the line tangent to the graph of ϕ at (c, ϕ(c).

8. Let C be the curve in R2 parametrized by f(t) = (t3, t6), −∞ < t <∞. Is f a smooth
parametrization of C? If not, can you find a smooth parametrization of C?
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9. Let C be the curve in R2 parametrized by f(t) = (t2, t2), −∞ < t <∞. Show that f
is not a smooth parametrization of C. Where is the problem? Plot C and identify the
location of the problem.

10. Let v 6= 0 and p be vectors in Rn and let C be the curve in Rn parametrized by
f(t) = tv + p. What is the best affine approximation to f at t = t0?

11. For each of the following, find the unit tangent vector and the principal unit normal
vector at the indicated point.

(a) f(t) = (t, t2), t = 1 (b) g(t) = (3 sin(2t), 3 cos(2t)), t =
π

3

(c) f(t) = (2 cos(t), 4 sin(t)), t =
π

4
(d) h(t) = (cos(πt), 2 sin(πt)), t =

3

4

(e) g(t) = (cos(t), sin(t), t), t =
π

3
(f) f(t) = (2 sin(t), 3 cos(2t), 2t), t =

π

4

(g) f(t) = (sin(πt),− cos(πt), 3t), t =
1

2
(h) g(t) = (cos(πt2), sin(πt2), t2), t = 1

(i) f(t) = (t, t2, t3), t = 2

12. Use the fact that f(t) = (b cos(t), b sin(t)) parametrizes a circle of radius b to show that
a radius of a circle is always perpendicular to the tangent line at the point where the
radius touches the circle.

13. Verify (2.2.21); that is, show that if f : R→ Rn and ϕ : R→ R are both differentiable,
then

D(ϕ(t)f(t)) = ϕ(t)Df(t) + ϕ′(t)f(t).

14. Suppose f : R→ R3 and g : R→ R3 are both differentiable. Show that

D(f(t)× g(t)) = f(t)×Dg(t) +Df(t)× g(t),

yet another version of the product rule.

15. The following figure illustrates a curve in R2 parametrized by some function f : R →
R2. If T is the unit tangent vector at the indicated point on the curve, then either M
or N is the principal unit normal vector at that point. Which one is it?

T
N

M
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Section 2.3

Motion Along a Curve

Velocity and acceleration

Consider a particle moving in space so that its position at time t is given by x(t). We
think of x(t) as moving along a curve C parametrized by a function f , where f : R→ Rn.
Hence we have x(t) = f(t), or, more simply, x = f(t). For us, n will always be 2 or 3, but
there are physical situations in which it is reasonable to have larger values of n, and most
of what we do in this section will apply to those cases equally well. This is also a good
time to introduce the Leibniz notation for a derivative, thus writing

dx

dt
= Df(t). (2.3.1)

At a given time t0, the vector x(t0 +h)−x(t0) represents the magnitude and direction
of the change of position of the particle along C from time t0 to time t0 + h, as shown in
Figure 2.3.1. Dividing by h, we obtain a vector,

x(t0 + h)− x(t0)

h
, (2.3.2)

with the same direction, but with length approximating the average speed of the particle
over the time interval from t0 to t0 + h. Assuming differentiability and taking the limit as
h approaches 0, we have the following definition.

x(   )

x (    +   )t h
x(    +   )t0 - x(   )t0

t0

0

h

Figure 2.3.1 Motion along a curve C

1 Copyright c© by Dan Sloughter 2001
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Definition Suppose x(t) is the position of a particle at time t moving along a curve C
in Rn. We call

v(t) =
d

dt
x(t) (2.3.3)

the velocity of the partial at time t and we call

s(t) = ‖v(t)‖ (2.3.4)

the speed of the particle at time t. Moreover, we call

a(t) =
d

dt
v(t) (2.3.5)

the acceleration of the particle at time t.

Example Consider a particle moving along an ellipse so that its position at any time t
is

x = (2 cos(t), sin(t)).

Then its velocity is

v = (−2 sin(t), cos(t)),

its speed is

s =

√
4 sin2(t) + cos2(t) =

√
3 sin2(t) + 1,

and its acceleration is

a = (−2 cos(t),− sin(t)).

For example, at t = π
4 we have

x
∣∣
t=π

4

=

(√
2,

1√
2

)
,

v
∣∣
t=π

4

=

(
−
√

2,
1√
2

)
,

s
∣∣
t=π

4

=

√
5

2
,

and

a
∣∣
t=π

4

=

(
−
√

2,− 1√
2

)
.

See Figure 2.3.2. Notice that, in this examples, a = −x for all values of t.
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Figure 2.3.2 Position, velocity, and acceleration vectors for motion on an ellipse

Curvature

Suppose x is the position, v is the velocity, s is the speed, and a is the acceleration, at
time t, of a particle moving along a curve C. Let T (t) be the unit tangent vector and N(t)
be the principal unit normal vector at x. Now

T (t) =

dx

dt∥∥∥∥
dx

dt

∥∥∥∥
=

v

‖v‖ =
v

s
, (2.3.6)

so
v = s‖T (t)‖. (2.3.7)

Thus

a =
dv

dt
=

d

dt
sT (t) =

ds

dt
T (t) + sDT (t) (2.3.8)

Since

N(t) =
DT (t)

‖DT (t)‖ , (2.3.9)

we have

a =
ds

dt
T (t) + s‖DT (t)‖N(t). (2.3.10)

Note that (2.3.10) expresses the acceleration of a particle as the sum of scalar multiples
of the unit tangent vector and the principal unit normal vector. That is,

a = aTT (t) + aNN(t), (2.3.11)

where

aT =
ds

dt
(2.3.12)

and
aN = s‖DT (t)‖. (2.3.13)
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However, since T (t) and N(t) are orthogonal unit vectors, we also have

a · T (t) = (aTT (t) + aNN(t)) · T (t)

= aT (T (t) · T (t)) + aN (T (t) ·N(t))

= aT

(2.3.14)

and
a ·N(t) = (aTT (t) + aNN(t)) ·N(t)

= aT (T (t) ·N(t)) + aN (N(t) ·N(t))

= aN .

(2.3.15)

Hence aT is the coordinate of a in the direction of T (t) and aN is the coordinate of a in the
direction of N(t). Thus (2.3.10) writes the acceleration as a sum of its component in the
direction of the unit tangent vector and its component in the direction of the principal unit
normal vector. In particular, this shows that the acceleration lies in the plane determined
by T (t) and N(t). Moreover, aT is the rate of change of speed, while aN is the product of
the speed s and ‖DT (t)‖, the magnitude of the rate of change of the unit tangent vector.
Since ‖T (t)‖ = 1 for all t, ‖DT (t)‖ reflects only the rate at which the direction of T (t)
is changing; in other words, ‖DT (t)‖ is a measurement of how fast the direction of the
particle moving along the curve C is changing at time t. If we divide this by the speed
of the particle, we obtain a standard measurement of the rate of change of direction of C
itself.

Definition Given a curve C with smooth parametrization x = f(t), we call

κ =
‖DT (t)‖
s(t)

(2.3.16)

the curvature of C at f(t).

Using (2.3.16), we can rewrite (2.3.10) as

a =
ds

dt
T (t) + s2κN(t). (2.3.17)

Hence the coordinate of acceleration in the direction of the tangent vector is the rate of
change of the speed and the coordinate of acceleration in the direction of the principal
normal vector is the square of the speed times the curvature. Thus the greater the speed
or the tighter the curve, the larger the size of the normal component of acceleration; the
greater the rate at which speed is increasing, the greater the tangential component of
acceleration. This is why drivers are advised to slow down while approaching a curve, and
then to accelerate while driving through the curve.

Example Suppose a particle moves along a line in Rn so that its position at any time t
is given by

x = tw + p,
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where w 6= 0 and p are vectors in Rn. Then the particle has velocity

v =
dx

dt
= w

and speed s = ‖w‖, so the unit tangent vector is

T (t) =
v

s
=

w

‖w‖ .

Hence T (t) is a constant vector, so DT (t) = 0 and

κ =
‖DT (t)‖

s
= 0

for all t. In other words, a line has zero curvature, as we should expect since the tangent
vector never changes direction.

Example Consider a particle moving along a circle C in R2 of radius r > 0 and center
(a, b), with its position at time given by

x = (r cos(t) + a, r sin(t) + b).

Then its velocity, speed, and acceleration are

v = (−r sin(t), r cos(t)),

s =

√
r2 sin( t) + r2 cos2(t) = r

and

a = (−r cos(t),−r sin(t)),

respectively. Hence the unit tangent vector is

T (t) =
v

s
= (− sin(t), cos(t)).

Thus

DT (t) = (− cos(t),− sin(t))

and

‖DT (t)‖ =

√
cos2(t) + sin2(t) = 1.

Hence the curvature of C is, for all t,

κ =
‖DT (t)‖

s
=

1

r
.
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Thus a circle has constant curvature, namely, the reciprocal of the radius of the circle. In
particular, the larger the radius of a circle, the smaller the curvature. Also, note that

ds

dt
=

d

dt
r = 0,

so, from (2.3.10), we have
a = rN(t),

which we can verify directly. That is, the acceleration has a normal component, but no
tangential component.

Example Now consider a particle moving along an ellipse E so that its position at any
time t is

x = (2 cos(t), sin(t)).

Then, as we saw above, the velocity and speed of the particle are

v = (−2 sin(t), cos(t))

and
s =

√
3 sin(2) + 1,

respectively. For purposes of differentiation, it will be helpful to rewrite s as

s =

√
3

2
(1− cos(2t)) + 1 =

√
5− 3 cos(2t)

2
.

Then the unit tangent vector is

T (t) =

√
2

5− 3 cos(2t)
(−2 sin(t), cos(t)).

Thus

DT (t) =

√
2

5− 3 cos(2t)
(−2 cos(t),− sin(t))− 3

√
2 sin(2t)

(5− 3 cos(2t))
3
2

(−2 sin(t), cos(t)).

So, for example, at t = π
4 , we have

x
∣∣
t=π

4

=

(√
2,

1√
2

)
,

v
∣∣
t=π

4

=

(
−
√

2,
1√
2

)
,

s
∣∣
t=π

4

=

√
5

2
,
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T
(π

4

)
=

1√
5

(−2, 1),

DT
(π

4

)
= − 1

5
√

5
(4, 8),

and ∥∥∥DT
(π

4

)∥∥∥ =
1

5
√

5

√
16 + 64 =

4

5
.

Hence the curvature of E at
(√

2, 1√
2

)
is

κ
∣∣
t=π

4

=

4

5√
5

2

=
4
√

2

5
√

5
= 0.05060,

where the final numerical value has been rounded to four decimal places. Although the
general expression for κ is complicated, it is easily computed and plotted using a computer
algebra system, as shown in Figure 2.3.3. Comparing this with the plot of this ellipse in
Figure 2.3.2, we can see why the curvature is greatest around (2, 0) and (−2, 0), corre-
sponding to t = 0, t = π, and t = 2π, and smallest at (0, 1) and (0,−1), corresponding to
t = π

2 and t = 3π
2 . Finally, as we saw above, the acceleration of the particle is

a = (−2 cos(t),− sin(t)),

so

a
∣∣
t=π

4

=

(
−
√

2,− 1√
2

)
.

Now if we write
a
∣∣
t=π

4

= aTT (t) + aNN(t),

then we may either compute, using (2.3.17),

aT =
ds

dt

∣∣∣
t=π

4

=
1√
2

(5− 3 cos(2t))−
1
2 (3 sin(2t)

∣∣∣
t=π

4

=
3√
10

and

aN = s2
∣∣
t=π

4

k
∣∣
t=π

4

=
5

2

4
√

2

5
√

5
=

2
√

2√
5

=
4√
10
,

or, using (2.3.14) and (2.3.15),

aT = a
∣∣
t=π

4

· T
(π

4

)
=

(
−
√

2,− 1√
2

)
· 1√

5
(−2, 1) =

3√
10

and

aN = a
∣∣
t=π

4

·N
(π

4

)
=

(
−
√

2,− 1√
2

)
· 1

4
√

5
(−4,−8) =

4√
10
.
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2

Figure 2.3.3 Curvature of an ellipse

Hence, in either case,

a
∣∣
t=π

4

=
3√
10
T
(π

4

)
+

4√
10
N
(π

4

)
.

Arc length

Suppose a particle moves along a curve C in Rn so that its position at time t is given by
x = f(t) and let D be the distance traveled by the particle from time t = a to t = b. We
will suppose that s(t) = ‖v(t)‖ is continuous on [a, b]. To approximate D, we divide [a, b]
into n subintervals, each of length

∆t =
b− a
n

,

and label the endpoints of the subintervals a = t0, t1, . . . , tn = b. If ∆t is small, then the
distance the particle travels during the jth subinterval, j = 1, 2, . . . , n, should be, approx-
imately, s∆t, an approximation which improves as ∆t decreases. Hence, for sufficiently
small ∆t (equivalently, sufficiently large n),

n∑

j=1

s(tj−1)∆t (2.3.18)

will provide an approximation as close to D as desired. That is, we should define

D = lim
n→∞

n∑

j=1

s(tj−1)∆t. (2.3.19)

But (2.3.18) is a Riemann sum (in particular, a left-hand rule sum) which approximates
the definite integral ∫ b

a

s(t)dt. (2.3.20)
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Hence the limit in (2.3.19) is the value of the definite integral (2.3.20), and so we have the
following definition.

Definition Suppose a particle moves along a curve C in Rn so that its position at time
t is given by x = f(t). Suppose the velocity v(t) is continuous on the interval [a, b]. Then
we define the distance traveled by the particle from time t = a to time t = b to be

∫ b

a

‖v(t)‖dt. (2.3.21)

Note that the distance traveled is the length of the curve C if the particle traverses C
exactly once. In that case, we call (2.3.21) the length of C. In general, for any t such that
the interval [a, t] is in the domain of f , we may calculate

σ(t) =

∫ t

a

‖v(u)‖du, (2.3.22)

which we call the arc length function for C.

Example Consider the helix H parametrized by

f(t) = (cos(t), sin(t), t).

If we let L denote the length of one complete loop of the helix, then a particle traveling
along H according to x = f(t) will traverse this distance as t goes from 0 to 2π. Since

v(t) = (− sin(t), cos(t), 1),

we have

‖v(t)‖ =

√
sin2(t) + cos2(t) + 1 =

√
2.

Hence

L =

∫ 2π

0

√
2dt = 2

√
2π.

Example Suppose a particle moves along a curve C so that its position at time t is given
by

x = ((1 + 2 cos(t)) cos(t), (1 + 2 cos(t)) sin(t)).

Then C is the curve in Figure 2.3.4, which is called a limaçon. The particle will traverse
this curve once as t goes from 0 to 2π. Now

v = (−(1 + 2 cos(t)) sin(t)− 2 sin(t) cos(t), (1 + 2 cos(t)) cos(t)− 2 sin2(t)),

so

‖v‖2 = v · v
= (1 + 2 cos(t))2 sin2(t) + 4(1 + 2 cos(t)) sin2(t) cos(t) + 4 sin2(t) cos2(t)

+ (1 + 2 cos(t))2 cos2(t)− 4(1 + 2 cos(t)) sin2(t) cos(t) + 4 sin4(t)

= (1 + 2 cos(t))2(sin2(t) + cos2(t)) + 4 sin2(t) cos2(t) + 4 sin4(t)

= (1 + 2 cos(t))2 + 4 sin2(t) cos2(t) + 4 sin4(t)

,
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Figure 2.3.4 A limaçon

Hence the length of C is

∫ 2π

0

√
(1 + 2 cos(t))2 + 4 sin2(t) cos2(t) + 4 sin4(t) dt = 13.3649,

where the integration was performed with a computer and the final result rounded to four
decimal places. Note that integrating from 0 to 4π would find the distance the particle
travels in going around C twice, namely,

∫ 4π

0

√
(1 + 2 cos(t))2 + 4 sin2(t) cos2(t) + 4 sin4(t) dt = 26.7298.

Problems

1. For each of the following, suppose a particle is moving along a curve so that its position
at time t is given by x = f(t). Find the velocity and acceleration of the particle.

(a) f(t) = (t2 + 3, sin(t)) (b) f(t) = (t2e−2t, t3e−2t, 3t)

(c) f(t) = (cos(3t2), sin(3t2)) (d) f(t) = (t cos(t2), t sin(t2), 3t cos(t2))

2. Find the curvature of the following curves at the given point.

(a) f(t) = (t, t2), t = 1 (b) f(t) = (3 cos(t), sin(t)), t =
π

4
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(c) f(t) = (cos(t), sin(t), t), t =
π

3
(d) f(t) = (cos(t), sin(t), e−t), t = 0

3. Plot the curvature for each of the following curves over the given interval I.

(a) f(t) = (t, t2), I = [−2, 2]

(b) f(t) = (cos(t), 3 sin(t)), I = [0, 2π]

(c) g(t) = ((1 + 2 cos(t)) cos(t), (1 + 2 cos(t)) sin(t)), I = [0, 2π]

(d) h(t) = (2 cos(t), sin(t), 2t), I = [0, 2π]

(e) f(t) = (4 cos(t) + sin(4t), 4 sin(t) + sin(4t)), I = [0, 2π]

4. For each of the following, suppose a particle is moving along a curve so that its position
at time t is given by x = f(t). Find the coordinates of acceleration in the direction of
the unit tangent vector and in the direction of the principal unit normal vector at the
specified point. Write the acceleration as a sum of scalar multiples of the unit tangent
vector and the principal unit normal vector.

(a) f(t) = (sin(t), cos(t)), t =
π

3
(b) f(t) = (cos(t), 3 sin(t)), t =

π

4

(c) f(t) = (t, t2), t = 1 (d) f(t) = (sin(t), cos(t), t), t =
π

3

5. Suppose a particle moves along a curve C in R3 so that its position at time t is given by
x = f(t). Let v, s, and a denote the velocity, speed, and acceleration of the particle,
respectively, and let κ be the curvature of C.

(a) Using the facts v = sT (t) and

a =
ds

dt
T (t) + s2κN(t),

show that
v × a = s3κ(T (t)×N(t)).

(b) Use the result of part (a) to show that

κ =
‖v × a‖
‖v‖3 .

6. Let H be the helix in R3 parametrized by f(t) = (cos(t), sin(t), t). Use the result from
Problem 5 to compute the curvature κ of H for any time t.

7. Let C be the elliptical helix in R3 parametrized by f(t) = (4 cos(t), 2 sin(t), t). Use the
result from Problem 5 to compute the curvature κ of C at t = π

4 .

8. Let C be the curve in R2 which is the graph of the function ϕ : R→ R. Use the result
from Problem 5 to show that the curvature of C at the point (t, ϕ(t)) is

κ =
|ϕ′′(t)|

(1 + (ϕ′(t))2)
3
2

.
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9. Let P be the graph of f(t) = t2. Use the result from Problem 8 to find the curvature
of P at (1, 1) and (2, 4).

10. Let C be the graph of f(t) = t3. Use the result from Problem 8 to find the curvature
of C at (1, 1) and (2, 8).

11. Let C be the graph of g(t) = sin(t). Use the result from Problem 8 to find the curvature

of C at
(
π
2 , 1
)

and
(
π
4 ,

1√
2

)
.

12. For each of the following, suppose a particle is moving along a curve so that its position
at time t is given by x = f(t). Find the distance traveled by the particle over the given
time interval.

(a) f(t) = (sin(t), 3 cos(t)), I = [0, 2π]

(b) f(t) = (cos(πt), sin(πt), 2t), I = [0, 4]

(c) f(t) = (t, t2), I = [0, 2]

(d) f(t) = (t cos(t), t sin(t)), I = [0, 2π]

(e) f(t) = (cos(2πt), sin(2πt), 3t2, t), I = [0, 1]

(f) f(t) = (e−t cos(πt), e−t sin(πt)), I = [−2, 2]

(g) f(t) = (4 cos(t) + sin(4t), 4 sin(t) + sin(4t)), I = [0, 2π]

13. Verify that the circumference of a circle of radius r is 2πr.

14. The curve parametrized by

f(t) = (sin(2t) cos(t), sin(2t) sin(t))

has four “petals.” Find the length of one of these petals.

15. The curve C parametrized by h(t) = (cos3(t), sin3(t)) is called a hypocycloid (see
Figure 2.2.3 in Section 2.3). Find the length of C.

16. Suppose ϕ : R→ R is continuously differentiable and let C be the part of the graph of
ϕ over the interval [a, b]. Show that the length of C is

∫ b

a

√
1 + (ϕ′(t))2 dt.

17. Use the result from Problem 16 to find the length of one arch of the graph of f(t) =
sin(t).

18. Let h : R → Rn parametrize a curve C. We say C is parametrized by arc length if
‖Dh(t)‖ = 1 for all t.

(a) Let σ be the arc length function for C using the parametrization f and let σ−1 be its
inverse function. Show that the function g : R→ Rn defined by g(u) = f(σ−1(u))
parametrizes C by arc length.
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(b) Let C be the circular helix in R3 with parametrization f(t) = (cos(t), sin(t), t).
Find a function g : R→ Rn which parametrizes C by arc length.

19. Suppose f : R → Rn is continuous on the closed interval [a, b] and has coordinate
functions f1, f2, . . . , fn. We define the definite integral of f over the interval [a, b] to
be ∫ b

a

f(t)dt =

(∫ b

a

f1(t)dt,

∫ b

a

f2(t)dt, . . . ,

∫ b

a

fn(t)dt

)
.

Show that if a particle moves so its velocity at time t is v(t), then, assuming v is a
continuous function on an interval [a, b], the position of the particle for any time t in
[a, b] is given by

x(t) =

∫ t

a

v(s)ds+ x(a).

20. Suppose a particle moves along a curve in R3 so that its velocity at any time t is

v(t) = (cos(2t), sin(2t), 3t).

If the particle is at (0, 1, 0) when t = 0, use Problem 19 to determine its position for
any other time t.

21. Suppose a particle moves along a curve in R3 so that its acceleration at any time t is

a(t) = (cos(t), sin(t), 0).

If the particle is at (1, 2, 0) with velocity (0, 1, 1) at time t = 0, use Problem 19 to
determine its position for any other time t.

22. Suppose a projectile is fired from the ground at an angle α with an initial speed
v0, as shown in Figure 2.3.5. Let x(t), v(t), and a(t) be the position, velocity, and
acceleration, respectively, of the projectile at time t.

α

(0)v

Figure 2.3.5 The path of a projectile
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(a) Explain why x(0) = (0, 0), v(0) = (v0 cos(α), v0 sin(α)), and a(t) = (0,−g) for all
t, where g = 9.8 meters per second per second is the acceleration due to gravity.

(b) Use Problem 19 to find v(t).

(c) Use Problem 19 to find x(t).

(d) Show that the curve parametrized by x(t) is a parabola. That is, let x(t) = (x, y)
and show that y = ax2 + bx+ c for some constants a, b, and c.

(e) Show that the range of the projectile, that is, the horizontal distance traveled, is

R =
v0 sin(2α)

g

and conclude that the range is maximized when α = π
4 .

(f) When does the projectile hit the ground?

(g) What is the maximum height reached by the projectile? When does it reach this
height?

23. Suppose a1,a2, . . . ,am are unit vectors in Rn, m ≤ n, which are mutually orthogonal
(that is, ai ⊥ aj when i 6= j). If x is a vector in Rn with

x = x1a1 + x2a2 + · · ·+ xmam,

show that xi = x · ai, i = 1, 2, . . . ,m.



Several Variables

The Calculus of Functions

of

Section 3.1

Geometry, Limits, and
Continuity

In this chapter we will study functions f : Rn → R, functions which take vectors for inputs
and give scalars for outputs. For example, the function that takes a point in space for
input and gives back the temperature at that point is such a function; the function that
reports the gross national product of a country is another such function. Note that the
domain space of the first example is three-dimensional, while the domain of the latter has,
for most countries, thousands of dimensions. As usual, whenever possible we will state our
results for an arbitrary n-dimensional space, although most of our examples will deal with
only two or three dimensions.

Level sets and graphs

We begin by considering some geometrical methods for picturing functions of the form
f : Rn → R.

Definition Given a function f : Rn → R and a real number c, we call the set

L = {(x1, x2, . . . , xn) : f(x1, x2, . . . , xn) = c} (3.1.1)

a level set of f at level c. We also call L a contour of f . When n = 2, we call L a level
curve of f and when n = 3 we call L a level surface of f . A plot displaying level sets for
several different levels is called a contour plot.

Example Suppose f : R2 → R is defined by

f(x, y) = 2x2 + y2.

Given a real number c, the set of all points satisfying

2x2 + y2 = c

is a level set of f . For c < 0, this set is empty; for c = 0, it consists of only the point (0, 0);
for any c > 0, the level set is an ellipse with center at (0, 0). Hence a contour plot of f , as
shown in Figure 3.1.1, consists of concentric ellipses.

Example Suppose f : R2 → R is defined by

f(x, y) =
sin(

√
x2 + y2)√
x2 + y2

.

1 Copyright c© by Dan Sloughter 2001
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Figure 3.1.1 Level curves 2x2 + y2 = c

For any point (x, y) on the circle of radius r > 0 centered at the origin, f(x, y) has the
constant value

sin(r)

r
.

Hence a contour plot of f , like that shown in Figure 3.1.2, consists of concentric circles
centered at the origin.

Example Suppose f : R3 → R is defined by

f(x, y, z) = x2 + 2y2 + 3z2.

The level surface of f with equation

x2 + 2y2 + 3z2 = 1

is shown in Figure 3.1.3. Note that, for example, fixing a value z0 of z yields the equation

x2 + y2 = 1− 3z2
0 ,
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Figure 3.1.2 Level curves
sin(

√
x2 + y2)√
x2 + y2

= c

the equation of an ellipse. This explains why a slice of the level surface shown in Figure
3.1.3 parallel to the xy-plane is an ellipse. Similarly, slices parallel to the xz-plane and the
yz-plane are ellipses, which is why this surface is an example of an ellipsoid.
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Figure 3.1.3 The level surface x2 + 2y2 + 3z2 = 1
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Figure 3.1.4 The paraboloid z = 2x2 + y2

Definition Given a function f : Rn → R, we call the set

G = {(x1, x2, . . . , xn, xn+1) : xn+1 = f(x1, x2, . . . , xn)} (3.1.2)

the graph of f .

Note that the graph G of a function f : Rn → R is in Rn+1. As a consequence, we can
picture G only if n = 1, in which case G is a curve as studied in single-variable calculus,
or n = 2, in which case G is a surface in R3.
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Example Consider the function f : R2 → R defined by

f(x, y) = 2x2 + y2.

The graph of f is then the set of all points (x, y, z) in R3 which satisfy the equation
z = 2x2 + y2. One way to picture the graph of f is to imagine raising the level curves
in Figure 3.1.1 to their respective heights above the xy-plane, creating the surface in R3

shown in Figure 3.1.4. Another way to picture the graph is to consider slices of the graph
lying above a grid of lines parallel to the axes in the xy-plane. For example, for a fixed
value of x, say x0, the set of points satisfying the equation z = 2x2

0 +y2 is a parabola lying
above the line x = x0. Similarly, fixing a value y0 of y yields the parabola z = 2x2 + y0

lying above the line y = y0. If we draw these parabolas for numerous lines of the form
x = x0 and y = y0, we obtain a wire-frame of the graph. The graph shown in Figure 3.1.4
was obtained by filling in the surface patches of a wire-frame mesh, the outline of which is
visible on the surface. This surface is an example of a paraboloid.
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Figure 3.1.5 Graph of f(x, y) =
sin(

√
x2 + y2)√
x2 + y2

Example Although the graphs of many functions may be sketched reasonably well by
hand using the ideas of the previous example, for most functions a good picture of its graph
requires either computer graphics or considerable artistic skill. For example, consider the
graph of

f(x, y) =
sin(

√
x2 + y2)√
x2 + y2

.

Using the contour plot, we can imagine how the graph of f oscillates as we move away
from the origin, the level circles of the contour plot rising and falling with the oscillations
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of
sin(r)

r
,

where r =
√
x2 + y2. Equivalently, the slice of the graph above any line through the origin

will be the graph of

z =
sin(r)

r
.

This should give you a good idea what the graph of f looks like, but, nevertheless, most of
us could not produce the picture of Figure 3.1.5 without the aid of a computer. Notice that
although f is not defined at (0, 0), it appears that f(x, y) approaches 1 as (x, y) approaches
0. This is in fact true, a consequence of the fact that

lim
r→0

sin(r)

r
= 1.

We will return to this example after we have introduced limits and continuity.

Limits and continuity

By now the following two definitions should look familiar.

Definition Let a be a point in Rn and let O be the set of all points in the open ball of
radius r > 0 centered at c except c itself. That is,

O = {x : x is in Bn(c, r),x 6= c}. (3.1.3)

Suppose f : Rn → R is defined for all x in O. We say the limit of f(x) as x approaches c
is L, written lim

x→c
f(x) = L, if for every sequence of points {xm} in O,

lim
m→∞

f(xm) = L (3.1.4)

whenever lim
m→∞

xm = c.

Definition Suppose f : Rn → R is defined for all x in some open ball Bn(c, r), r > 0 .
We say f is continuous at c if

lim
x→c

f(x) = f(c). (3.1.5)

The following basic properties of limits follow immediately from the analogous prop-
erties for limits of sequences.

Proposition Suppose f : Rn → R and g : Rn → R with

lim
x→c

f(x) = L

and
lim
x→c

g(x) = M.
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Then
lim
x→c

(f(x) + g(x)) = L+M, (3.1.6)

lim
x→c

(f(x)− g(x)) = L−M, (3.1.7)

lim
x→c

f(x)g(x) = LM, (3.1.8)

lim
x→c

f(x)

g(x)
=

L

M
, (3.1.9)

and
lim
x→c

kf(x) = kL (3.1.10)

for any scalar k.

Now suppose f : Rn → R, h : R→ R,

lim
x→c

f(x) = L, (3.1.11)

and h is continuous at L. Then for any sequence {xm} in Rn with

lim
m→∞

xm = c, (3.1.12)

we have
lim
m→∞

f(xm) = L, (3.1.13)

and so
lim
m→∞

h(f(xm)) = h(L) (3.1.14)

by the continuity of h at L. Thus we have the following result about compositions of
functions.

Proposition If f : Rn → R, h : R→ R,

lim
x→c

f(x) = L,

and h is continuous at L, then

lim
x→c

h ◦ f(x) = lim
x→c

h(f(x)) = h(L). (3.1.15)

Example Suppose we define f : Rn → R by

f(x1, x2, . . . , xn) = xk,

where k is a fixed integer between 1 and n. If a = (a1, a2, . . . , an) is a point in Rn and
lim
m→∞

xm = a, then

lim
m→∞

f(xm) = lim
m→∞

xmk = ak,
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where xmk is the kth coordinate of xm. Thus

lim
x→a

f(x) = ak.

This result is a basic building block for the examples that follow. For a particular example,
if f(x, y) = x, then

lim
(x,y)→(2,3)

f(x, y) = lim
(x,y)→(2,3)

x = 2.

Example If we define f : R3 → R by

f(x, y, z) = xyz,

then, using (3.1.8) in combination with the previous example,

lim
(x,y,z)→(a,b,c)

f(x, y, z) = lim
(x,y,z)→(a,b,c)

xyz

= ( lim
(x,y,z)→(a,b,c)

x)( lim
(x,y,z)→(a,b,c)

y)( lim
(x,y,z)→(a,b,c)

z)

= abc.

for any point (a, b, c) in R3. For example,

lim
(x,y,z)→(3,2,1)

f(x, y, z) = lim
(x,y,z)→(3,2,1)

xyz = (3)(2)(1) = 6.

Example Combining the previous examples with (3.1.6), (3.1.7), (3.1.8), and (3.1.10),
we have

lim
(x,y,z)→(2,1,3)

(xy2 + 3xyz − 6xz) = ( lim
(x,y,z)→(2,1,3)

x)( lim
(x,y,z)→(2,1,3)

y)( lim
(x,y,z)→(2,1,3)

y)

+ 3( lim
(x,y,z)→(2,1,3)

x)( lim
(x,y,z)→(2,1,3)

y)( lim
(x,y,z)→(2,1,3)

z)

− 6( lim
(x,y,z)→(2,1,3)

x)( lim
(x,y,z)→(2,1,3)

z)

= (2)(1)(1) + (3)(2)(1)(3)− (6)(2)(3)

= −16.

The last three examples are all examples of polynomials in several variables. In general,
a function f : Rn → R of the form

f(x1, x2, . . . , xn) = axi11 x
i2
2 · · ·xinn ,

where a is a scalar and i1, i2, . . . , in are nonnegative integers, is called a monomial. A
function which is a sum of monomials is called a polynomial. The following proposition is
a consequence of the previous examples and (3.1.6), (3.1.7), (3.1.8), and (3.1.10).
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Proposition If f : Rn → R is a polynomial, then for any point c in Rn,

lim
x→c

f(x) = f(c). (3.1.16)

In other words, f is continuous at every point c in Rn.

If g and h are both polynomials, then we call the function

f(x) =
g(x)

h(x)
(3.1.17)

a rational function. The next proposition is a consequence of the previous theorem and
(3.1.9).

Proposition If is a rational function defined at c, then

lim
x→c

f(x) = f(c). (3.1.18)

In other words, f is continuous at every point c in its domain.

Example Since

f(x, y, z) =
x2y + 3xyz2

4x2 + 3z2

is a rational function, we have, for example,

lim
(x,y,z)→(2,1,3)

f(x, y, z) = lim
(x,y,z)→(2,1,3)

x2y + 3xyz2

4x2 + 3z2
=

4 + 54

16 + 27
=

58

43
.

Example Combining (3.1.18) with (3.1.15), we have

lim
(x,y,z)→(1,2,1)

log

(
1

x2 + y2 + z2

)
= log

(
lim

(x,y,z)→(1,2,1)

1

x2 + y2 + z2

)

= log

(
1

6

)

= − log(6).

From the continuity of the square root function and our result above about the conti-
nuity of polynomials, we may conclude that the function f : Rn → R defined by

f(x1, x2, . . . , xn) = ‖(x1, x2, . . . , xn)‖ =
√
x2

1 + x2
2 + · · ·+ x2

n

is a continuous function. This fact is useful in computing some limits, particularly in
combination with the fact that for any point x = (x1, x2, . . . , xn) in Rn,

‖x‖ =
√
x2

1 + x2
2 + · · ·+ x2

n ≥
√
x2
k = |xk| (3.1.19)

for any k = 1, 2, . . . , n.
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Figure 3.1.6 Graph of f(x, y) =
x2y

x2 + y2

Example Suppose f : R2 → R is defined by

f(x, y) =
x2y

x2 + y2
.

Although f is a rational function, we cannot use (3.1.18) to compute

lim
(x,y)→(0,0)

f(x, y)

since f is not defined at (0, 0). However, if we let x = (x, y), then, using (3.1.19),

|f(x, y)| =
∣∣∣∣
x2y

x2 + y2

∣∣∣∣ =
|x|2|y|
|x2 + y2| =

|x|2|y|
‖x‖2 ≤

‖x‖2‖x‖
‖x‖2 = ‖x‖.

Now
lim

(x,y)→(0,0)
‖x‖ = 0,

so
lim

(x,y)→(0,0)
|f(x, y)| = 0.

Hence

lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

x2y

x2 + y2
= 0.

See Figure 3.1.6.
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Recall that for a function ϕ : R→ R,

lim
t→c

ϕ(t) = L

if and only if both

lim
t→c−

ϕ(t) = L

and

lim
t→c+

ϕ(t) = L.

In particular, if the one-sided limits do not agree, we may conclude that the limit does
not exist. Similar reasoning may be applied to a function f : Rn → R, the difference
being that there are infinitely many different curves along which the variable x might
approach a given point c in Rn, as opposed to only the two directions of approach in R.
As a consequence, it is not possible to establish the existence of a limit with this type
of argument. Nevertheless, finding two ways to approach c which yield different limiting
values is sufficient to show that the limit does not exist.

Example Suppose g : R2 → R is defined by

g(x, y) =
xy

x2 + y2
.

If we define α : R2 → R by α(t) = (t, 0), then

lim
t→0

α(t) = lim
t→0

(t, 0) = (0, 0)

and

lim
t→0

g(α(t)) = lim
t→0

f(t, 0) = lim
t→0

0

t2
= 0.

Now α is a parametrization of the x-axis, so the previous limit computation says that
g(x, y) approaches 0 as (x, y) approaches (0, 0) along the x-axis. However, if we define
β : R→ R2 by β(t) = (t, t), then β parametrizes the line x = y,

lim
t→0

β(t) = lim
t→0

(t, t) = (0, 0),

and

lim
t→0

g(β(t)) = lim
t→0

f(t, t) = lim
t→0

t2

2t2
=

1

2
.

Hence g(x, y) approaches 1
2 as (x, y) approaches (0, 0) along the line x = y. Since these two

limits are different, we may conclude that g(x, y) does not have a limit as (x, y) approaches
(0, 0). Note that g in this example and f in the previous example are very similar functions,
although our limit calculations show that their behavior around (0, 0) differs significantly.
In particular, f has a limit as (x, y) approaches (0, 0), whereas g does not. This may be
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Figure 3.1.7 Graph of g(x, y) =
xy

x2 + y2

seen by comparing the graph of g in Figure 3.1.7, which has a tear at the origin, with that
of f in Figure 3.1.6.

The next proposition lists some basic properties of continuous functions, all of which
follow immediately from the similar list of properties of limits.

Proposition Suppose f : Rn → R and g : Rn → R are both continuous at c. Then the
functions with values at x given by

f(x) + g(x), (3.1.20)

f(x)− g(x), (3.1.21)

f(x)g(x), (3.1.22)

f(x)

g(x)
(3.1.23)

(provided g(c) 6= 0), and
kf(x), (3.1.24)

where k is any scalar, are all continuous at c.

From the result above about the limit of a composition of two functions, we have the
following proposition.

Proposition If f : Rn → R is continuous at c and ϕ : R → R is continuous at f(c),
then ϕ ◦ f is continuous at c.
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Example Since the function ϕ(t) = sin(t) is continuous for all t and the function

f(x, y, z) =
√
x2 + y2 + z2

is continuous at all points (x, y, z) in R3, the function

g(x, y, z) = sin(
√
x2 + y2 + z2)

is continuous at all points (x, y, z) in R3.

Example Since the function

h(x, y) = sin(
√
x2 + y2)

is continuous for all (x, y) in R2 (same argument as in the previous example) and the
function

g(x, y) =
√
x2 + y2

is continuous for all (x, y) in R2, the function

f(x, y) =
sin(

√
x2 + y2)√
x2 + y2

is, using (3.1.23), continuous at every point (x, y) 6= (0, 0) in R2. Moreover, if we let
x = (x, y), then

lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

sin(
√
x2 + y2)√
x2 + y2

= lim
(x,y)→(0,0)

sin(‖x‖)
‖x‖ = lim

r→0

sin(r)

r
= 1.

Hence the discontinuity at (0, 0) is removable. That is, if we define

g(x, y) =





sin(
√
x2 + y2)√
x2 + y2

, if (x, y) 6= (0, 0),

1, if (x, y) = (0, 0),

then g is continuous for all (x, y) in R2.

Open and closed sets

In single-variable calculus we talk about a function being continuous not just at a point,
but on an open interval, meaning that the function is continuous at every point in the
open interval. Similarly, we need to generalize the definition of continuity of a function
f : Rn → R from that of continuity at a point in Rn to the idea of a function being
continuous on a set in Rn. Now the condition for a function f to be continuous at a point
c requires that f be defined on some open ball containing c. Hence, in order to say that f
is continuous at every point in some set U , it is necessary that, given any point u in U , f
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be defined on some open ball containing u. This provides the motivation for the following
definition.

Definition We say a set of points U in Rn is open if whenever u is a point in U , there
exists a real number r > 0 such that the open ball Bn(u, r) lies entirely within U . We say
a set of points C in Rn is closed if the set of all points in Rn which do not lie in C form
an open set.

Example Rn is itself an open set.

Example Any open ball in Rn is an open set. In particular, any open interval in R is an
open set. To see why, consider an open ball Bn(a, r) in Rn. Given a point y in Bn(a, r),
let s be the smaller of ‖y−a‖ (the distance from y to the center of the ball) and r−‖y−a‖
(the distance from y to the edge of the ball). Then Bn(y, s) is an open ball which lies
entirely within Bn(a, r). Hence Bn(a, r) is an open set.

Example Any closed ball in Rn is a closed set. In particular, any closed interval in R is
a closed set. To see why, consider a closed ball B̄n(a, r). Given a point y not in B̄n(a, r),
let s = ‖y− a‖− r, the distance from y to the edge of B̄n(a, r). Then Bn(y, s) is an open
ball which lies entirely outside of B̄n(x, r). Hence B̄n(x, r) is a closed set.

Example Given real numbers a1 < b1, a2 < b2, . . . , an < bn, we call the set

U = {(x1, x2, . . . , xn) : ai < xi < bi, i = 1, 2, . . . , n}
an open rectangle in Rn and the set

C = {(x1, x2, . . . , xn) : ai ≤ xi ≤ bi, i = 1, 2, . . . , n}
a closed rectangle in Rn. An argument similar to that in the previous example shows that
U is an open set and C is a closed set.

Definition We say a function f : Rn → R is continuous on an open set U if f is
continuous at every point u in U .

Example The function

f(x, y, z) =
3xyz − 6x

x2 + y2 + z2 + 1

is continuous on R3.

Example The functions

f(x, y) =





x2y

x2 + y2
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0),

and

g(x, y) =





sin(
√
x2 + y2)√
x2 + y2

, if (x, y) 6= (0, 0),

1, if (x, y) = (0, 0),

are, from our work in previous examples, continuous on R2.
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Example The function

g(x, y) =
xy

x2 + y2

is continuous on the open set

U = {(x, y) : (x, y) 6= (0, 0)}.

Note that in this case it is not possible to define g at (0, 0) in such a way that the resulting
function is continuous at (0, 0), a consequence of our work above showing that g does not
have a limit as (x, y) approaches (0, 0).

Example The function

f(x, y) = log(xy)

is continuous on the open set

U = {(x, y) : x > 0 and y > 0}.

Problems

1. Plot the graph and a contour plot for each of the following functions. Do your plots
over regions large enough to illustrate the behavior of the function.

(a) f(x, y) = x2 + 4y2 (b) f(x, y) = x2 − y2

(c) f(x, y) = 4y2 − 2x2 (d) h(x, y) = sin(x) cos(y)

(e) f(x, y) = sin(x+ y) (f) g(x, y) = sin(x2 + y2)

(g) g(x, y) = sin(x2 − y2) (h) h(x, y) = xe−
√
x2+y2

(i) f(x, y) =
1

2π
e−

1
2π (x2+y2) (j) f(x, y) = sin(π sin(x) + y)

(k) h(x, y) =
sin(x2 + y2)

x2 + y2
(l) g(x, y) = log(

√
x2 + y2)

2. For each of the following, plot the contour surface f(x, y, z) = c for the specified value
of c.

(a) f(x, y, z) = x2 + y2 + z2, c = 4 (b) f(x, y, z) = x2 + 4y2 + 2z2, c = 7

(c) f(x, y, z) = x2 + y2 − z2, c = 1 (d) f(x, y, z) = x2 − y2 + z2, c = 1

3. Evaluate the following limits.

(a) lim
(x,y)→(2,1)

(3xy + x2y + 4y) (b) lim
(x,y,z)→(1,2,1)

3xyz

2xy2 + 4z

(c) lim
(x,y)→(2,0)

cos(3xy)√
x2 + 1

(d) lim
(x,y,z)→(2,1,3)

ye2x−3y+z
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4. For each of the following, either find the specified limit or explain why the limit does
not exist.

(a) lim
(x,y)→(0,0)

xy2

x2 + y2
(b) lim

(x,y)→(0,0)

x

x+ y

(c) lim
(x,y)→(0,0)

x

x+ y2
(d) lim

(x,y)→(0,0)

xy√
x2 + y2

(e) lim
(x,y)→(0,0)

1− e−(x2+y2)

x2 + y2
(f) lim

(x,y)→(0,0)

x4 − y4

x2 + y2

5. Let f(x, y) =
x2y

x4 + 4y2
.

(a) Define α : R→ R2 by α(t) = (t, 0). Show that lim
t→0

f(α(t)) = 0.

(b) Define β : R→ R2 by β(t) = (0, t). Show that lim
t→0

f(β(t)) = 0.

(c) Show that for any real number m, if we define γ : R→ R2 by γ(t) = (t,mt), then
lim
t→0

f(γ(t)) = 0.

(d) Define δ : R→ R2 by δ(t) = (t, t2). Show that lim
t→0

f(δ(t)) =
1

5
.

(e) What can you conclude about lim
(x,y)→(0,0)

x2y

x4 + 4y2
?

(f) Plot the graph of f and explain your results in terms of the graph.

6. Discuss the continuity of the function

f(x, y) =





1− e−
√
x2+y2

√
x2 + y2

, if (x, y) 6= (0, 0),

1, if (x, y) = (0, 0).

7. Discuss the continuity of the function

g(x, y) =





x2y2

x4 + y4
, if (x, y) 6= (0, 0),

1, if (x, y) = (0, 0).

8. For each of the following, decide whether the given set is open, closed, neither open
nor closed, or both open and closed.

(a) (3, 10) in R
(b) [−2, 5] in R
(c) {(x, y) : x2 + y2 < 4} in R2

(d) {(x, y) : x2 + y2 > 4} in R2
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(e) {(x, y) : x2 + y2 ≤ 4} in R2

(f) {(x, y) : x2 + y2 = 4} in R2

(g) {(x, y, z) : −1 < x < 1,−2 < y < 3, 2 < z < 5} in R3

(h) {(x, y) : −3 < x ≤ 4,−2 ≤ y < 1} in R2

9. Give an example of a subset of R which is neither open nor closed.

10. Is it possible for a subset of R2 to be both open and closed? Explain.



Several Variables

The Calculus of Functions

of

Section 3.2

Directional Derivatives and
the Gradient

For a function ϕ : R → R, the derivative at a point c, that is,

ϕ′(c) = lim
h→0

ϕ(c+ h)− ϕ(c)

h
, (3.2.1)

is the slope of the best affine approximation to ϕ at c. We may also regard it as the slope
of the graph of ϕ at (c, ϕ(c)), or as the instantaneous rate of change of ϕ(x) with respect
to x when x = c. As a prelude to finding the best affine approximations for a function
f : Rn → R, we will first discuss how to generalize (3.2.1) to this setting using the ideas of
slopes and rates of change for our motivation.

Directional derivatives

Example Consider the function f : R2 → R defined by

f(x, y) = 4− 2x2 − y2,

the graph of which is pictured in Figure 3.2.1. If we imagine a bug moving along this
surface, then the slope of the path encountered by the bug will depend both on the bug’s
position and the direction in which it is moving. For example, if the bug is above the point
(1, 1) in the xy-plane, moving in the direction of the vector v = (−1,−1) will cause it to
head directly towards the top of the graph, and thus have a steep rate of ascent, whereas
moving in the direction of −v = (1, 1) would cause it to descend at a fast rate. These two
possibilities are illustrated by the red curve on the surface in Figure 3.2.1. For another
example, heading around the surface above the ellipse

2x2 + y2 = 3

in the xy-plane, which from (1, 1) means heading initially in the direction of the vector
w = (−1, 2), would lead the bug around the side of the hill with no change in elevation,
and hence a slope of 0. This possibility is illustrated by the green curve on the surface in
Figure 3.2.1. Thus in order to talk about the slope of the graph of f at a point, we must
specify a direction as well. For example, suppose the bug moves in the direction of v. If
we let

u = − 1√
2
(1, 1),

the direction of v, then, letting c = (1, 1),

f(c+ hu)− f(c)

h

1 Copyright c© by Dan Sloughter 2001
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Figure 3.2.1 Graph of f(x) = 4− 2x2 − y2

would, for any h > 0, represent an approximation to the slope of the graph of f at (1, 1)
in the direction of u. As in single-variable calculus, we should expect that taking the limit
as h approaches 0 should give us the exact slope at (1, 1) in the direction of u. Now

f(c+ hu)− f(c) = f

(
1− h√

2
, 1− h√

2

)
− f(1, 1)

= 4− 2

(
1− h√

2

)2

−
(
1− h√

2

)2

− 1

= 3− 3

(
1−

√
2h+

h2

2

)

= 3
√
2h− 3h2

2

= h

(
3
√
2− 3h

2

)
,

so

lim
h→0

f(c+ hu)− f(c)

h
= lim

h→0

(
3
√
2− 3h

2

)
= 3

√
2.

Hence the graph of f has a slope of 3
√
2 if we start above (1, 1) and head in the direction

of u; similar computations would show that the slope in the direction of −u is −3
√
2 and

the slope in the direction of
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w

‖w‖ =
1√
5
(−1, 2)

is 0.

Definition Suppose f : Rn → R is defined on an open ball about a point c. Given a
unit vector u, we call

Duf(c) = lim
h→0

f(c+ hu)− f(c)

h
, (3.2.2)

provided the limit exists, the directional derivative of f in the direction of u at c.

Example From our work above, if f(x, y) = 4− 2x2 − y2 and

u = − 1√
2
(1, 1),

then Duf(1, 1) = 3
√
2.

Directional derivatives in the direction of the standard basis vectors will be of special
importance.

Definition Suppose f : Rn → R is defined on an open ball about a point c. If we
consider f as a function of x = (x1, x2, . . . , xn) and let ek be the kth standard basis
vector, k = 1, 2, . . . , n, then we call Dek

f(c), if it exists, the partial derivative of f with
respect to xk at c.

Notations for the partial derivative of f with respect to xk at an arbitrary point
x = (x1, x2, . . . , xn) include Dxk

f(x1, x2, . . . , xn), fxk
(x1, x2, . . . , xn), and

∂

∂xk
f(x1, x2, . . . , xn).

Now suppose f : Rn → R and, for fixed x = (x1, x2, . . . , xn), define g : R → R by

g(t) = f(t, x2, . . . , xn).

Then

fx1
(x1, x2, . . . , xn) = lim

h→0

f((x1, x2, . . . , xn) + he1)− f(x1, x2, . . . , xn)

h

= lim
h→0

f((x1, x2, . . . , xn) + (h, 0, . . . , 0))− f(x1, x2, . . . , xn)

h

= lim
h→0

f(x1 + h, x2, . . . , xn)− f(x1, x2, . . . , xn)

h

= lim
h→0

g(x1 + h)− g(x1)

h

= g′(x1).

(3.2.3)
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In other words, we may compute the partial derivative fx1(x1, x2, . . . , xn) by treating
x2, x3, . . . , xn as constants and differentiating with respect to x1 as we would in single-
variable calculus. The same statement holds for any coordinate: To find the partial
derivative with respect to xk, treat the other coordinates as constants and differentiate
as if the function depended only on xk.

Example If f : R2 → R is defined by

f(x, y) = 3x2 − 4xy2,

then, treating y as a constant and differentiating with respect to x,

fx(x, y) = 6x− 4y2

and, treating x as a constant and differentiating with respect to y,

fy(x, y) = −8xy.

Example If f : R4 → R is defined by

f(w, x, y, z) = − log(w2 + x2 + y2 + z2),

then
∂

∂w
f(w, z, y, z) = − 2w

w2 + x2 + y2 + z2
,

∂

∂x
f(w, z, y, z) = − 2x

w2 + x2 + y2 + z2
,

∂

∂y
f(w, z, y, z) = − 2y

w2 + x2 + y2 + z2
,

and
∂

∂z
f(w, z, y, z) = − 2z

w2 + x2 + y2 + z2
.

Example Suppose g : R2 → R is defined by

g(x, y) =





xy

x2 + y2
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

We saw in Section 3.1 that lim
(x,y)→(0,0)

g(x, y) does not exist; in particular, g is not continuous

at (0, 0). However,

∂

∂x
g(0, 0) = lim

h→0

g((0, 0) + h(1, 0))− g(0, 0)

h
= lim

h→0

g(h, 0)

h
= lim

h→0

0

h
= 0
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and
∂

∂y
g(0, 0) = lim

h→0

g((0, 0) + h(0, 1))− g(0, 0)

h
= lim

h→0

g(0, h)

h
= lim

h→0

0

h
= 0.

This shows that it is possible for a function to have partial derivatives at a point without
being continuous at that point. However, we shall see in Section 3.3 that this function is
not differentiable at (0, 0); that is, f does not have a best affine approximation at (0, 0).

The gradient

Definition Suppose f : Rn → R is defined on an open ball containing the point c and
∂

∂xk
f(c) exists for k = 1, 2, . . . , n. We call the vector

∇f(c) =
(

∂

∂x1
f(c),

∂

∂x2
f(c), . . . ,

∂

∂xn
f(c)

)
(3.2.4)

the gradient of f at c.

Example If f : R2 → R is defined by

f(x, y) = 3x2 − 4xy2,

then

∇f(x, y) = (6x− 4y2,−8xy).

Thus, for example, ∇f(2,−1) = (8, 16).

Example If f : R4 → R is defined by

f(w, x, y, z) = − log(w2 + x2 + y2 + z2),

then

∇f(w, x, y, z) = − 2

w2 + x2 + y2 + z2
(w, x, y, z).

Thus, for example,

∇f(1, 2, 2, 1) = −1

5
(1, 2, 2, 1).

Notice that if f : Rn → R, then ∇f : Rn → Rn; that is, we may view the gradient as a
function which takes an n-dimensional vector for input and returns another n-dimensional
vector. We call a function of this type a vector field.

Definition We say a function f : Rn → R is C1 on an open set U if f is continuous on
U and, for k = 1, 2, . . . , n, ∂f

∂xk
is continuous on U .



6 Directional Derivatives and the Gradient Section 3.2

Now suppose f : R2 → R is C1 on some open ball containing the point c = (c1, c2). Let
u = (u1, u2) be a unit vector and suppose we wish to compute the directional derivative
Duf(c). From the definition, we have

Duf(c) = lim
h→0

f(c+ hu)− f(c)

h

= lim
h→0

f(c1 + hu1, c2 + hu2)− f(c1, c2)

h

= lim
h→0

f(c1 + hu1, c2 + hu2)− f(c1 + hu1, c2) + f(c1 + hu1, c2)− f(c1, c2)

h

= lim
h→0

(
f(c1 + hu1, c2 + hu2)− f(c1 + hu1, c2)

h
+
f(c1 + hu1, c2)− f(c1, c2)

h

)
.

For a fixed value of h 6= 0, define ϕ : R → R by

ϕ(t) = f(c1 + hu1, c2 + t). (3.2.5)

Note that ϕ is differentiable with

ϕ′(t) = lim
s→0

ϕ(t+ s)− ϕ(t)

s

= lim
s→0

f(c1 + hu1, c2 + t+ s)− f(c1 + hu1, c2 + t)

s

=
∂

∂y
f(c1 + hu1, c2 + t).

(3.2.6)

Hence if we define α : R → R by

α(t) = ϕ(u2t) = f(c1 + hu1, c2 + tu2), (3.2.7)

then α is differentiable with

α′(t) = u2ϕ
′(u2t) = u2

∂

∂y
f(c1 + hu1, c2 + tu2). (3.2.8)

By the Mean Value Theorem from single-variable calculus, there exists a number a between
0 and h such that

α(h)− α(0)

h
= α′(a). (3.2.9)

Putting (3.2.7) and (3.2.8) into (3.2.9), we have

f(c1 + hu1, c2 + hu2)− f(c1 + hu2, c2)

h
= u2

∂

∂y
f(c1 + hu1, c2 + au2). (3.2.10)

Similarly, if we define β : R → R by

β(t) = f(c1 + tu1, c2), (3.2.11)
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then β is differentiable,

β′(t) = u1
∂

∂x
f(c1 + tu1, c2), (3.2.12)

and, using the Mean Value Theorem again, there exists a number b between 0 and h such
that

f(c1 + hu1, c2)− f(c1, c2)

h
=
β(h)− β(0)

h
= β′(b) = u1

∂

∂x
f(c1 + bu1, c2). (3.2.13)

Putting (3.2.10) and (3.2.13) into our expression for Duf(c) above, we have

Duf(c) = lim
h→0

(
u2

∂

∂y
f(c1 + hu1, c2 + au2) + u1

∂

∂x
f(c1 + bu1, c2)

)
. (3.2.14)

Now both a and b approach 0 as h approaches 0 and both ∂f
∂x and ∂f

∂y are assumed to be

continuous, so evaluating the limit in (3.2.14) gives us

Duf(c) = u2
∂

∂y
f(c1, c2) + u1

∂

∂x
f(c1, c2) = ∇f(c) · u. (3.2.15)

A straightforward generalization of (3.2.15) to the case of a function f : Rn → R gives
us the following theorem.

Theorem Suppose f : Rn → R is C1 on an open ball containing the point c. Then for
any unit vector u, Duf(c) exists and

Duf(c) = ∇f(c) · u. (3.2.16)

Example If f : R2 → R is defined by

f(x, y) = 4− 2x2 − y2,

then
∇f(x, y) = (−4x,−2y).

If

u = − 1√
2
(1, 1),

then

Duf(1, 1) = ∇f(1, 1) · u = (−4,−2) ·
(
− 1√

2
(1, 1)

)
=

6√
2
= 3

√
2,

as we saw in this first example of this section. Note also that

D−uf(1, 1) = ∇f(1, 1) · (−u) = (−4,−2) ·
(

1√
2
(1, 1)

)
= − 6√

2
= −3

√
2
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and, if

w =
1√
5
(−1, 2),

Dwf(1, 1) = ∇f(1, 1) · (w) = (−4,−2) ·
(

1√
5
(−1, 2)

)
= 0,

as claimed earlier.

Example Suppose the temperature at a point in a metal cube is given by

T (x, y, z) = 80− 20xe−
1
20 (x

2+y2+z2),

where the center of the cube is taken to be at (0, 0, 0). Then we have

∂

∂x
T (x, y, z) = 2x2e−

1
20 (x

2+y2+z2) − 20e−
1
20 (x

2+y2+z2),

∂

∂y
T (x, y, z) = 2xye−

1
20 (x

2+y2+z2),

and
∂

∂z
T (x, y, z) = 2xze−

1
20 (x

2+y2+z2),

so

∇T (x, y, z) = e−
1
20 (x

2+y2+z2)(2x2 − 20, 2xy, 2xz).

Hence, for example, the rate of change of temperature at the origin in the direction of the
unit vector

u =
1√
3
(1,−1, 1)

is

DuT (0, 0, 0) = ∇T (0, 0, 0) · u = (−20, 0, 0) ·
(

1√
3
(1,−1, 1)

)
= − 20√

3
.

An application of the Cauchy-Schwarz inequality to (3.2.16) shows us that

|Duf(c)| = |∇f(c) · u| ≤ ‖∇f(c)‖‖u‖ = ‖∇f(c)‖. (3.2.17)

Thus the magnitude of the rate of change of f in any direction at a given point never
exceeds the length of the gradient vector at that point. Moreover, in our discussion of
the Cauchy-Schwarz inequality we saw that we have equality in (3.2.17) if and only if u is
parallel to ∇f(c). Indeed, supposing ∇f(c) 6= 0, when

u =
∇f(c)

‖∇f(c)‖ ,
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we have

Duf(c) = ∇f(c) · u =
∇f(c) · ∇f(c)

‖∇f(c)‖ =
‖∇f(c)‖2
‖∇f(c)‖ = ‖∇f(c)‖ (3.2.18)

and
D−uf(c) = −‖∇f(c)‖. (3.2.19)

Hence we have the following result.

Proposition Suppose f : Rn → R is C1 on an open ball containing the point c. Then
Duf(c) has a maximum value of ‖∇f(c)‖ when u is the direction of ∇f(c) and a minimum
value of −‖∇f(c)‖ when u is the direction of −∇f(c).

In other words, the gradient vector points in the direction of the maximum rate of
increase of the function and the negative of the gradient vector points in the direction of
the maximum rate of decrease of the function. Moreover, the length of the gradient vector
tells us the rate of increase in the direction of maximum increase and its negative tells us
the rate of decrease in the direction of maximum decrease.

Example As we saw above, if f : R2 → R is defined by

f(x, y) = 4− 2x2 − y2,

then
∇f(x, y, ) = (−4x,−2y).

Thus ∇f(1, 1) = (−4,−2). Hence if a bug standing above (1, 1) on the graph of f wants
to head in the direction of most rapid ascent, it should move in the direction of the unit
vector

u =
∇f(1, 1)

‖∇f(1, 1)‖ = − 1√
5
(2, 1).

If the bug wants to head in the direction of most rapid descent, it should move in the
direction of the unit vector

−u =
1√
5
(2, 1).

Moreover,
Duf(1, 1) = ‖∇f(1, 1)‖ =

√
20

and
D−uf(1, 1) = −‖∇f(1, 1)‖ = −

√
20.

Figure 3.2.2 shows scaled values of ∇f(x, y) plotted for a grid of points (x, y). The vec-
tors are scaled so that they fit in the plot, without overlap, yet still show their relative
magnitudes. This is another good geometric way to view the behavior of the function.
Supposing our bug were placed on the side of the graph above (1, 1) and that it headed up
the hill in such a manner that it always chose the direction of steepest ascent, we can see
that it would head more quickly toward the y-axis than toward the x-axis. More explicitly,



10 Directional Derivatives and the Gradient Section 3.2
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Figure 3.2.2 Scaled gradient vectors for f(x, y) = 4− 2x2 − y2

if C is the shadow of the path of the bug in the xy-plane, then the slope of C at any point
(x, y) would be

dy

dx
=

−2y

−4x
=

y

2x
.

Hence
1

y

dy

dx
=

1

2x
.

If we integrate both sides of this equality, we have
∫

1

y

dy

dx
dx =

∫
1

2x
dx.

Thus

log |y| = 1

2
log |x|+ c

for some constant c, from which we have

elog |y| = e
1
2 log |x|+c.

It follows that
y = k

√
|x|,

where k = ±ec. Since y = 1 when x = 1, k = 1 and we see that C is the graph of y =
√
x.

Figure 3.2.2 shows C along with the plot of the gradient vectors of f , while Figure 3.2.3
shows the actual path of the bug on the graph of f .
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Figure 3.2.3 Graph f(x, y) = 4− 2x2 − y2 with path of most rapid ascent from (1, 1, 1)

Example For a two-dimensional version of the temperature example discussed above,
consider a metal plate heated so that its temperature at (x, y) is given by

T (x, y) = 80− 20xe−
1
20 (x

2+y2).

Then
∇T (x, y) = e−

1
20 (x

2+y2)(2x2 − 20, 2xy),

so, for example,
∇T (0, 0) = (−20, 0).

Thus at the origin the temperature is increasing most rapidly in the direction of u = (−1, 0)
and decreasing most rapidly in the direction of (1, 0). Moreover,

DuT (0, 0) = ‖∇f(0, 0)‖ = 20

and
D−uT (0, 0) = −‖∇f(0, 0)‖ = 20.

Note that

D−uT (0, 0) =
∂

∂x
T (0, 0)

and

DuT (0, 0) = − ∂

∂x
T (0, 0).
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Figure 3.2.4 Scaled gradient vectors for T (x, y) = 80− 20xe−
1
20 (x

2+y2)

Figure 3.2.4 is a plot of scaled gradient vectors for this temperature function. From the
plot it is easy to see which direction a bug placed on this metal plate would have to choose
in order to warm up as rapidly as possible. It should also be clear that the temperature
has a relative maximum around (−3, 0) and a relative minimum around (3, 0); these points
are, in fact, exactly (−

√
10, 0) and (

√
10, 0), the points where ∇T (x, y) = (0, 0). We will

consider the problem of finding maximum and minimum values of functions of more than
one variable in Section 3.5.

Problems

1. Suppose f : R2 → R is defined by

f(x, y) = 3x2 + 2y2.

Let

u =
1√
5
(1, 2).

Find Duf(3, 1) directly from the definition (3.2.2).

2. For each of the following functions, find the partial derivatives with respect to each
variable.



Section 3.2 Directional Derivatives and the Gradient 13

(a) f(x, y) =
4x

x2 + y2
(b) g(x, y) = 4xy2e−y2

(c) f(x, y, z) = 3x2y3z4 − 13x2y (d) h(x, y, z) = 4xze
− 1

x2+y2+z2

(e) g(w, x, y, z) = sin(
√
w2 + x2 + 2y2 + 3z2)

3. Find the gradient of each of the following functions.

(a) f(x, y, z) =
√
x2 + y2 + z2 (b) g(x, y, z) =

1√
x2 + y2 + z2

(c) f(w, x, y, z) = tan−1(4w + 3x+ 5y + z)

4. Find Duf(c) for each of the following.

(a) f(x, y) = 3x2 + 5y2, u =
1√
13

(3,−2), c = (−2, 1)

(b) f(x, y) = x2 − 2y2, u =
1√
5
(−1, 2), c = (−2, 3)

(c) f(x, y, z) =
1√

x2 + y2 + z2
, u =

1√
6
(1, 2, 1), c = (−2, 2, 1)

5. For each of the following, find the directional derivative of f at the point c in the
direction of the specified vector w.

(a) f(x, y) = 3x2y, w = (2, 3), c = (−2, 1)

(b) f(x, y, z) = log(x2 + 2y2 + z2), w = (−1, 2, 3), c = (2, 1, 1)

(c) f(t, x, y, z) = tx2yz2, w = (1,−1, 2, 3), c = (2, 1,−1, 2)

6. A metal plate is heated so that its temperature at a point (x, y) is

T (x, y) = 50y2e−
1
5 (x

2+y2).

A bug is placed at the point (2, 1).

(a) The bug heads toward the point (1,−2). What is the rate of change of temperature
in this direction?

(b) In what direction should the bug head in order to warm up at the fastest rate?
What is the rate of change of temperature in this direction?

(c) In what direction should the bug head in order to cool off at the fastest rate? What
is the rate of change of temperature in this direction?

(d) Make a plot of the gradient vectors and discuss what it tells you about the tem-
peratures on the plate.

7. A heat-seeking bug is a bug that always moves in the direction of the greatest increase
in heat. Discuss the behavior of a heat seeking bug placed on a metal plate heated so
that the temperature at (x, y) is given by

T (x, y) = 100− 40xye−
1
10 (x

2+y2).
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8. Suppose g : R2 → R is defined by

g(x, y) =





xy

x2 + y2
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

We saw above that both partial derivatives of g exist at (0, 0), although g is not
continuous at (0, 0).

(a) Show that neither ∂g
∂x nor ∂g

∂y is continuous at (0, 0).

(b) Let

u =
1√
2
(1, 1).

Show that Dug(0, 0) does not exist. In particular, Dug(0, 0) 6= ∇g(0, 0) · u.
9. Suppose the price of a certain commodity, call it commodity A, is x dollars per unit

and the price of another commodity, B, is y dollars per unit. Moreover, suppose that
dA(x, y) represents the number of units of A that will be sold at these prices and
dB(x, y) represents the number of units of B that will be sold at these prices. These
functions are known as the demand functions for A and B.

(a) Explain why it is reasonable to assume that

∂

∂x
dA(x, y) < 0

and
∂

∂y
dB(x, y) < 0

for all (x, y).

(b) Suppose the two commodities are competitive. For example, they might be two
different brands of the same product. In this case, what would be reasonable
assumptions for the signs of

∂

∂y
dA(x, y)

and
∂

∂x
dB(x, y)?

(c) Suppose the two commodities complement each other. For example, commodity
A might be a computer and commodity B a type of software. In this case, what
would be reasonable assumptions for the signs of

∂

∂y
dA(x, y)

and
∂

∂x
dB(x, y)?
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10. Suppose P (x1, x2, . . . , xn) represents the total production per week of a certain factory
as a function of x1, the number of workers, and other variables, such as the size of
the supply inventory, the number of hours the assembly lines run per week, and so on.
Show that average productivity

P (x1, x2, . . . , xn)

x1

increases as x1 increases if and only if

∂

∂x1
P (x1, x2, . . . , xn) >

P (x1, x2, . . . , xn)

x1
.

11. Suppose f : Rn → R is C1 on an open ball about the point c.

(a) Given a unit vector u, what is the relationship between Duf(c) and D−uf(c)?

(b) Is it possible that Duf(c) > 0 for every unit vector u?



Several Variables

The Calculus of Functions

of

Section 3.3

Best Affine Approximations

Best affine approximations

Given a function f : Rn → R and a point c, we wish to find the affine function A : Rn → R
which best approximates f for points close to c. As before, best will mean that the
remainder function,

R(h) = f(c+ h)−A(c+ h), (3.3.1)

approaches 0 at a sufficiently fast rate. In this context, since R(h) is a scalar and h is a
vector, sufficiently fast will mean that

lim
h→0

R(h)

‖h‖ = 0. (3.3.2)

Generalizing our previous notation, we will say that a function R : Rn → R satisfying
(3.3.2) is o(h). Note that if n = 1 this extended definition of o(h) is equivalent to the
definition given in Section 2.2.

Definition Suppose f : Rn → R is defined on an open ball containing the point c. We
call an affine function A : Rn → R the best affine approximation to f at c if (1) A(c) = f(c)
and (2) R(h) is o(h), where

R(h) = f(c+ h)−A(c+ h). (3.3.3)

Suppose f : Rn → R and suppose A : Rn → R is the best affine approximation to f at
c. Since A is affine, there exists a linear function L : Rn → R and a scalar b such that

A(x) = L(x) + b (3.3.4)

for all x in Rn. Since A(c) = f(c), we have

f(c) = L(c) + b, (3.3.5)

which implies that
b = f(c)− L(c). (3.3.6)

Hence
A(x) = L(x) + f(c)− L(c) = L(x− c) + f(c) (3.3.7)

1 Copyright c© by Dan Sloughter 2001
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for all x in Rn. Moreover, if we let

a = (L(e1), L(e2), . . . , L(en)), (3.3.8)

where e1, e2, . . . , en are, as usual, the standard basis vectors for Rn, then, from our results
in Section 1.5,

L(x) = a · x (3.3.9)

for all x in Rn. Hence
A(x) = a · (x− c) + f(c), (3.3.10)

for all x in Rn, and we see that A is completely determined by the vector a

Definition Suppose f : Rn → R is defined on an open ball containing the point c. If f
has a best affine approximation at c, then we say f is differentiable at c. Moreover, if the
best affine approximation to f at c is given by

A(x) = a · (x− c) + f(c), (3.3.11)

then we call a the derivative of f at c and write Df(c) = a.

Now suppose f : Rn → R is differentiable at c with best affine approximation A and
let a = (a1, a2, . . . , an) = Df(c). Since

R(h) = f(c+ h)−A(c+ h) = f(c+ h)− a · h− f(c) (3.3.12)

is o(h), we must have

lim
h→0

R(h)

‖h‖ = 0. (3.3.13)

In particular, for k = 1, 2, . . . , n, if we let h = tek, then h approaches 0 as t approaches 0,
so

0 = lim
t→0

R(tek)

‖tek‖
= lim

t→0

f(c+ tek)− t(a · ek)− f(c)

|t| = lim
t→0

f(c+ tek)− tak − f(c)

|t|

First considering t > 0, we have

0 = lim
t→0+

f(c+ tek)− tak − f(c)

t
= lim

t→0+

(
f(c+ tek)− f(c)

t
− ak

)
, (3.3.14)

implying that

ak = lim
t→0+

f(c+ tek)− f(c)

t
. (3.3.15)

With t < 0, we have

0 = lim
t→0−

f(c+ tek)− tak − f(c)

−t = − lim
t→0−

(
f(c+ tek)− f(c)

t
− ak

)
, (3.3.16)
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implying that

ak = lim
t→0−

f(c+ tek)− f(c)

t
. (3.3.17)

Hence

ak = lim
t→0

f(c+ tek)− f(c)

t
=

∂

∂xk
f(c). (3.3.18)

Thus we have shown that

a =

(
∂

∂x1
f(c),

∂

∂x2
f(c), . . . ,

∂

∂xn
f(c)

)
= ∇f(c). (3.3.19)

Theorem If f : Rn → R is differentiable at c, then

Df(c) = ∇f(c) (3.3.20)

It now follows that if f : Rn → R is differentiable at c, then the best affine approxi-
mation to f at c is

A(x) = ∇f(c) · (x− c)− f(c). (3.3.21)

However, the converse does not hold: it is possible for ∇f(c) to exist even when f is not
differentiable at c. Before looking at an example, note that if f is differentiable at c and
A is the best affine approximation to f at c, then, since R(h) = f(c + h) − A(c + h) is
o(h),

lim
h→0

(f(c+ h)−A(c+ h)) = lim
h→0

R(h)

‖h‖ ‖h‖ = 0‖0‖ = 0. (3.3.22)

Now A is continuous at c, so it follows that

lim
h→0

f(c+ h) = lim
h→0

A(c+ h) = A(c) = f(c). (3.3.23)

In other words, f is continuous at c.

Theorem If f : Rn → R is differentiable at c, then f is continuous at c.

Example Consider the function

g(x, y) =





xy

x2 + y2
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

In Section 3.1 we showed that g is not continuous at (0, 0) and in Section 3.2 we saw that
∇g(0, 0) = (0, 0). Since g is not continuous at (0, 0), it now follows, from the previous
theorem, that g is not differentiable at (0, 0), even though the gradient exists at that
point. From the graph of g in Figure 3.3.1 (originally seen in Figure 3.1.7), we can see
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Figure 3.3.1 The graph of a nondifferentiable function

that the fact that g is not differentiable, in fact, not even continuous, at the origin shows
up geometrically as a tear in the surface.

From this example we see that the differentiability of a function f : Rn → R at a
point c requires more than just the existence of the gradient of f at c. It turns out that
continuity of the partial derivatives of f on an open ball containing c suffices to show that
f is differentiable at c. Note that the partial derivatives of g in the previous example are
not continuous (see Problem 8 of Section 3.2).

So we will now assume that f : Rn → R is C1 on some open ball containing c. If we
define an affine function A : Rn → R by

A(x) = ∇f(c) · (x− c) + f(c), (3.3.24)

then the remainder function is

R(h) = f(c+ h)−A(c+ h) = f(c+ h)− f(c)−∇f(c) · h. (3.3.25)

We need to show that R(h) is o(h). Toward that end, for a fixed h 6= 0, define ϕ : R → R
by

ϕ(t) = f(c+ th). (3.3.26)

We first note that ϕ is differentiable with

ϕ′(t) = lim
s→0

ϕ(t+ s)− ϕ(t)

s

= lim
s→0

f(c+ (t+ s)h)− f(c+ th)

s
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= ‖h‖ lim
s→0

f
(
c+ th+ s‖h‖ h

‖h‖

)
− f(c+ th)

s‖h‖
= ‖h‖D h

‖h‖
f(c+ th)

= ‖h‖
(
∇f(c+ th) · h

‖h‖

)

= ∇f(c+ th) · h. (3.3.27)

From the Mean Value Theorem of single-variable calculus, it follows that there exists a
number s between 0 and 1 such that

ϕ′(s) = ϕ(1)− ϕ(0) = f(c+ h)− f(c). (3.3.28)

Hence we may write

R(h) = ∇f(c+ sh) · h−∇f(c) · h = (∇f(c+ sh)−∇f(c)) · h. (3.3.29)

Applying the Cauchy-Schwarz inequality to (3.3.29),

|R(h)| ≤ ‖∇f(c+ sh)−∇f(c)‖‖h‖, (3.3.30)

and so
|R(h)|
‖h‖ ≤ ‖∇f(c+ sh)−∇f(c)‖. (3.3.31)

Now the partial derivatives of f are continuous, so

lim
h→0

‖∇f(c+ sh)−∇f(c)‖ = ‖∇f(c+ s0)−∇f(c)‖

= ‖∇f(c)−∇f(c)‖
= 0.

(3.3.32)

Hence

lim
h→0

R(h)

‖h‖ = 0. (3.3.33)

That is, R(h) is o(h) and A is the best affine approximation to f at c. Thus we have the
following fundamental theorem.

Theorem If f : Rn → R is C1 on an open ball containing the point c, then f is
differentiable at c.

Example Suppose f : R2 → R is defined by

f(x, y) = 4− 2x2 − y2.

To find the best affine approximation to f at (1, 1), we first compute

∇f(x, y) = (−4x,−2y).
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Thus ∇f(1, 1) = (−4,−2) and f(1, 1) = 1, so the best affine approximation is

A(x, y) = (−4,−2) · (x− 1, y − 1) + 1.

Simplifying, we have

A(x, y) = −4x− 2y + 7.

Example Suppose f : R3 → R is defined by

f(x, y, z) =
√
x2 + y2 + z2.

Then

∇f(x, y, z) = 1√
x2 + y2 + z2

(x, y, z).

Thus, for example, the best affine approximation to f at (2, 1, 2) is

A(x, y, z) = ∇f(2, 1, 2) · (x− 2, y − 1, z − 2) + f(2, 1, 2)

=
1

3
(2, 1, 2) · (x− 2, y − 1, z − 2) + 3

=
2

3
(x− 2) +

1

3
(y − 1) +

2

3
(z − 2) + 3

=
2

3
x+

1

3
y +

2

3
z.

Now suppose we let (x, y, z) be the lengths of the three sides of a solid block, in which case
f(x, y, z) represents the length of the diagonal of the box. Moreover, suppose we measure
the sides of the block and find them to have lengths x = 2+ εx, y = 1+ εy, and z = 2+ εz,
where |εx| ≤ h, |εy| ≤ h, and |εz| ≤ h for some positive number h representing the limit of
the accuracy of our measuring device. We now estimate the diagonal of the box to be

f(2, 1, 2) = 3

with an error of

|f(2 + εx, 1 + εy, 2 + εz)− f(2, 1, 2)| ≈ |A(2 + εx, 1 + εy, 2 + εz)− 3|

=

∣∣∣∣
2

3
εx +

1

3
εy +

2

3
εz

∣∣∣∣

≤ 2

3
|εx|+

1

3
|εy|+

2

3
|εz|

≤ h

(
2

3
+

1

3
+

2

3

)

=
5

3
h.
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That is, we expect our error in estimating the diagonal of the block to be no more that 5
3

times the maximum error in our measurements of the sides of the block. For example, if
the error in our length measurements is off by no more than ±0.1 centimeters, then our
estimate of the diagonal of the box is off by no more than ±0.17 centimeters.

Note that if A : Rn → R is the best affine approximation to f : Rn → R at c =
(c1, c2, . . . , cn), then the graph of A is the set of all points (x1, x2, . . . , xn, z) in Rn+1

satisfying
z = ∇f(c) · (x1 − c1, x2 − c2, . . . , xn − cn) + f(c). (3.3.34)

Letting

n =

(
∂

∂x1
f(c),

∂

∂x2
f(c), . . . ,

∂

∂xn
f(c),−1

)
, (3.3.35)

we may describe the graph of A as the set of all points in Rn+1 satisfying

n · (x1 − c1, x2 − c2, . . . , xn − cn, z − f(c)) = 0. (3.3.36)

Thus the graph of A is a hyperplane in Rn+1 passing through the point (c1, c2, . . . , cn, f(c))
(a point on the graph of f) with normal vector n.

Definition If A : Rn → R is the best affine approximation to f : Rn → R at c =
(c1, c2, . . . , cn), then we call the graph of A the tangent hyperplane to the graph of f at
(c1, c2, . . . , cn, f(c)).

Example We saw above that the best affine approximation to

f(x, y) = 4− 2x2 − y2

at (1, 1) is
A(x, y) = 7− 4x− 2y.

Hence the equation of the tangent plane to the graph of f at is

z = 7− 4x− 2y,

or
4x+ 2y + z = 7.

Note that the vector n = (4, 2, 1) is normal to the tangent plane, and hence normal to the
graph of f at (1, 1, 1). The graph of f along with the tangent plane at (1, 1, 1) is shown in
Figure 3.3.2.

The chain rule

Suppose ϕ : R → Rn is differentiable at a point c and f : Rn → R is differentiable at the
point ϕ(c). Then the composition of f and ϕ is a function f ◦ϕ : R → R. To compute the
derivative of f ◦ ϕ at c, we must evaluate

(f ◦ ϕ)′(c) = lim
h→0

f ◦ ϕ(c+ h)− f ◦ ϕ(c)
h

= lim
h→0

f(ϕ(c+ h))− f(ϕ(c))

h
. (3.3.37)
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Figure 3.3.2 A plane tangent to the graph of f(x, y) = 4− 2x2 − y2

Let A be the best affine approximation to f at a = ϕ(c) and let k = ϕ(c+h)−ϕ(c). Then

f(ϕ(c+ h)) = f(a+ k) = A(a+ k) +R(k), (3.3.38)

where R(k) is o(k). Now
A(a+ k) = ∇f(a) · k+ f(a), (3.3.39)

so

f(ϕ(c+ h))− f(ϕ(c)) = f(a+ k)− f(a)

= ∇f(a) · k+R(k)

= ∇f(a) · (ϕ(c+ h)− ϕ(c)) +R(k). (3.3.40)

Substituting (3.3.40) into (3.3.37),we have

(f ◦ ϕ)′(c) = lim
h→0

∇f(a) · (ϕ(c+ h)− ϕ(c)) +R(k)

h

= lim
h→0

∇f(a) · ϕ(c+ h)− ϕ(c)

h
+ lim

h→0

R(k)

h

= ∇f(a) ·Dϕ(c) + lim
h→0

R(k)

h
. (3.3.41)
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Now R(k) is o(k), so

lim
k→0

R(k)

‖k‖ = 0,

from which it follows that, for any given ε > 0, we have

|R(k)|
‖k‖ < ε (3.3.42)

for sufficiently small k 6= 0. Since R(0) = 0, it follows that

|R(k)| < ε‖k‖ (3.3.43)

for all k sufficiently small. Moreover, ϕ is continuous at c, so we may choose h small
enough to guarantee that

k = ϕ(c+ h)− ϕ(h)

is small enough for (3.3.43) to hold. Hence for sufficiently small h 6= 0,

|R(k)|
h

<
ε‖k‖
h

. (3.3.44)

Now

lim
h→0

‖k‖
h

= lim
h→0

‖ϕ(c+ h)− ϕ(c)‖
h

= ‖Dϕ(c)‖ (3.3.45)

and the choice of ε was arbitrary, so it follows that

lim
h→0

R(k)

h
= 0. (3.3.46)

Hence
(f ◦ ϕ)′(c) = ∇f(a) ·Dϕ(c). (3.3.47)

This is a version of the chain rule.

Theorem Suppose ϕ : R → Rn is differentiable at c and f : Rn → R is differentiable at
ϕ(c). Then

(f ◦ ϕ)′(c) = ∇f(ϕ(c)) ·Dϕ(c). (3.3.48)

If we imagine a particle moving along the curve C parametrized by ϕ, with velocity
v(t) and unit tangent vector T (t) at time t, then (3.3.48) says that the rate of change of
f along C at ϕ(c) is

∇f(ϕ(c)) · v(c) = ‖v(c)‖∇f(ϕ(c)) · T (c) = ‖v(c)‖DT (c)f(ϕ(c)). (3.3.49)

In other words, the rate of change of f along C is the rate of change of f in the direction
of T (t) multiplied by the speed of the particle moving along the curve.
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Example Suppose that the temperature at a point (x, y, z) inside a cubical region of
space is given by

T (x, y, z) = 80− 20xe−
1
20 (x

2+y2+z2).

Moreover, suppose a bug flies through this region along the elliptical helix parametrized
by

ϕ(t) = (cos(πt), 2 sin(πt), t).

Then

∇T (x, y, z) = e−
1
20 (x

2+y2+z2)(2x2 − 20, 2xy, 2xz)

and

Dϕ(t) = (−π sin(πt), 2π cos(πt), 1).

Hence, for example, if we want to know the rate of change of temperature for the bug at
t = 1

3 , we would evaluate

Dϕ

(
1

3

)
=

(
−
√
3π

2
, π, 1

)

and

∇T
(
ϕ

(
1

3

))
= ∇T

(
1

2
,
√
3,

1

3

)
= e−

121
720

(
−39

2
,
√
3,

1

3

)
,

so

(T ◦ ϕ)′
(
1

3

)
= e−

121
720

(
−39

2
,
√
3,

1

3

)
·
(
−
√
3π

2
, π, 1

)

= e−
121
720

(
39π

√
3

4
+
√
3π +

1

3

)

= 49.73,

where the final value has been rounded to two decimal places. Hence at that moment the
temperature for the bug is increasing at rate of 49.73◦ per second. We could also express
this as

dT

dt

∣∣∣
t= 1

3

= 49.73◦.

For an alternative formulation of the chain rule, suppose f : Rn → R and xi : R → R,
i = 1, 2, . . . , n, are all differentiable and let w = f(x1, x2, . . . , xn). If x1, x2, . . . , xn are all
functions of t, then, by the chain rule,

dw

dt
=

(
∂w

∂x1
,
∂w

∂x2
, . . . ,

∂w

∂xn

)
·
(
dx1
dt

,
dx2
dt

, . . . ,
dxn
dt

)

=
∂w

∂x1

dx1
dt

+
∂w

∂x2

dx2
dt

+ · · ·+ ∂w

∂xn

dxn
dt

. (3.3.50)
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Example Suppose the dimensions of a box are increasing so that its length, width, and
height at time t are, in centimeters,

x = 3t,

y = t2,

and
z = t3,

respectively. Since the volume of the box is

V = xyz,

the rate of change of the volume is

dV

dt
=
∂V

∂x

dx

dt
+
∂V

∂y

dy

dt
+
∂V

∂z

dz

dt
= 3yz + 2xzt+ 3xyt2.

Hence, for example, at t = 2 we have x = 6, y = 4, and z = 8, so

dV

dt

∣∣∣∣
t=2

= 96 + 192 + 288 = 576 cm3/sec.

The gradient and level sets

Now consider a differentiable function f : Rn → R and a point a on the level set S specified
by f(x) = c for some scalar c. Suppose ϕ : R → Rn is a smooth parametrization of a curve
C which lies entirely on S and passes through a. Let ϕ(b) = a. Then the composition of
f and ϕ is a constant function; that is,

g(t) = f ◦ ϕ(t) = f(ϕ(t)) = c (3.3.51)

for all values of t. Thus, using the chain rule,

0 = g′(b) = ∇f(ϕ(b)) ·Dϕ(b) = ∇f(a) ·Dϕ(b). (3.3.52)

Hence
∇f(a) ⊥ Dϕ(b). (3.3.53)

Now Dϕ(b) is tangent to C at a; moreover, since (3.3.53) holds for any curve in S passing
through a, ∇f(a) is orthogonal to every vector tangent to S. In other words, ∇f(a) is
normal to the hyperplane tangent to S at a. Thus we have the following theorem.

Theorem Suppose f : Rn → R is differentiable on an open ball containing the point a,
and let S be the set of all points in Rn such that f(x) = f(a). If ∇f(a) 6= 0, then the
hyperplane with equation

∇f(a) · (x− a) = 0 (3.3.54)

is tangent to S at a.
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Figure 3.3.3 Sphere with tangent plane

For n = 2, the hyperplane described by (3.3.54) will be a tangent line to a curve; for
n = 3, it will be a tangent plane to a surface.

Example The set of all points S in R3 satisfying

x2 + y2 + z2 = 9

is a sphere with radius 3 centered at the origin. We will find an equation for the plane
tangent to S at (2,−1, 2). First note that S is a level surface for the function

f(x, y, z) = x2 + y2 + z2.

Now
∇f(x, y, z) = (2x, 2y, 2z),

so
∇f(2,−1, 2) = (4,−2, 4).

Thus an equation for the tangent plane is

(4,−2, 4) · (x− 2, y + 1, z − 2) = 0,

or
4x− 2y + 4z = 18.

See Figure 3.3.3.
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Problems

1. For each of the following, find the best affine approximation to the given function at
the specified point c.

(a) f(x, y) = 3x2 + 4y2 − 2, c = (2, 1)

(b) g(x, y) = y2 − x2, c = (1,−2)

(c) g(x, y) = y2 − x2, c = (0, 0)

(d) f(x, y, z) = − log(x2 + y2 + z2), c = (1, 0, 0)

(e) h(w, x, y, z) = w2 + x2 + 3y2 = 2z2, c = (1, 2,−2, 1)

2. For each of the following, find the equation of the plane tangent to the graph of f for
the given point c. Plot the graph and the tangent plane together.

(a) f(x, y) = 4x2 + y2, c = (1,−1) (b) f(x, y) =
√
9− x2 − y2, c = (2, 1)

(c) f(x, y) = 9− x2 − y2, c = (2,−2) (d) f(x, y) = 3y2 − x2, c = (1,−1)

3. Suppose A : Rn → R is the best affine approximation to f : Rn → R at c. Explain why
|∇f(c) · h| is a good approximation for |f(c+ h)− f(c)| when ‖h‖ is small. That is,
explain why |∇f(c) ·h| is a good approximation for the error in approximating f(c+h)
by f(c).

4. Suppose f : R3 → R is defined by f(x, y, z) = xyz.

(a) Find the best affine approximation to f at (3, 2, 4).

(b) Suppose x, y, and z represent the length, width, and height of a box. Suppose you
measure the length to be 3±h centimeters, the width to be 2±h centimeters, and
the height to be 4± h centimeters. Use the best affine approximation from (a) to
approximate the maximum error you would make in computing the volume of the
box from these measurements.

5. A metal plate is heated so that its temperature at a point (x, y) is

T (x, y) = 50y2e−
1
5 (x

2+y2).

A bug moves along the ellipse parametrized by

α(t) = (cos(t), 2 sin(t)).

Find the rate of change of temperature for the bug at times t = 0, t = π
4 , and t =

π
2 .

6. Let x, y, and z be the length, width, and height, respectively, of a box. Suppose the
box is increasing in size so that when x = 3 centimeters, y = 2 centimeters, and z = 5
centimeters, the length is increasing at rate of 2 centimeters per second, the width at a
rate of 4 centimeters per second, and the height at a rate of 3 centimeters per second.

(a) Find the rate of change of the volume of the box at this time.

(b) Find the rate of change of the length of the diagonal of the box at this time.
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7. Suppose w = − log(x2 + y2 + z2) and (x, y, z) = (4t, sin(t), cos(t). Find

dw

dt

∣∣∣
t=π

3

.

8. The kinetic energy K of an object of mass m moving in a straight line with velocity v
is

K =
1

2
mv2.

If, at time t = t0, m = 2000 kilograms, v = 50 meters per second, m is decreasing at a
rate of 2 kilograms per second, and v is increasing at a rate of 1.5 meters per second
per second, find

dK

dt

∣∣∣
t=t0

.

9. Each of the following equations specifies some curve in R2. In each case, find an
equation for the line tangent to the curve at the given point a.

(a) x2 + y2 = 5, a = (2, 1) (b) 2x2 + 4y2 = 18, a = (1,−2)

(c) y2 − x = 0, a = (4,−2) (d) y2 − x2 = 5, a = (−2, 3)

10. Each of the following equations specifies some surface in R3. In each case, find an
equation for the plane tangent to the surface at the given point a.

(a) x2 + y2 + z2 = 14, a = (2, 1,−3) (b) x2 + 3y2 + 2z2 = 9, a = (2,−1, 1)

(c) x2 + y2 − z2 = 1, a = (1, 2, 2) (d) xyz = 6, a = (1, 2, 3)

11. Suppose f : R2 → R is differentiable at (a, b), f(a, b) = c, and ∂
∂yf(a, b) 6= 0. Let C be

the level curve of f with equation f(x, y) = c. Show that

y = −
∂

∂x
f(a, b)

∂

∂y
f(a, b)

(x− a) + b

is an equation for the line tangent to C at (a, b).
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Second-Order Approximations

In one-variable calculus, Taylor polynomials provide a natural way to extend best affine
approximations to higher-order polynomial approximations. It is possible to generalize
these ideas to scalar-valued functions of two or more variables, but the theory rapidly
becomes involved and technical. In this section we will be content merely to point the
way with a discussion of second-degree Taylor polynomials. Even at this level, it is best
to leave full explanations for a course in advanced calculus.

Higher-order derivatives

The first step is to introduce higher order derivatives. If f : Rn → R has partial derivatives
which exist on an open set U , then, for any i = 1, 2, 3, . . . , n, ∂f

∂xi
is itself a function from Rn

to R. The partial derivatives of ∂f
∂xi

, if they exist, are called second-order partial derivatives

of f . We may denote the partial derivative of ∂f
∂xi

with respect to xj , j = 1, 2, 3, . . .,

evaluated at a point x, by either ∂2

∂xj∂xi
f(x), or fxixj

(x), or Dxixj
f(x). Note the order

in which the variables are written; it is possible that differentiating first with respect to
xi and second with respect xj will yield a different result than if the order were reversed.

If j = i, we will write ∂2

∂x2
i

f(x) for ∂2

∂xi∂xi
f(x). It is, of course, possible to extend this

notation to third, fourth, and higher-order derivatives.

Example Suppose f(x, y) = x2y − 3x sin(2y). Then

fx(x, y) = 2xy − 3 sin(2y)

and
fy(x, y) = x2 − 6x cos(2y),

so
fxx(x, y) = 2y,

fxy(x, y) = 2x− 6 cos(2y),

fyy(x, y) = 12x sin(2y),

and
fyx(x, y) = 2x− 6 cos(2y).

Note that, in this example, fxy(x, y) = fyx(x, y). For an example of a third-order deriva-
tive,

fyxy(x, y) = 12 sin(2y).

1 Copyright c© by Dan Sloughter 2001
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Example Suppose w = xy2z3 − 4xy log(z). Then, for example,

∂2w

∂y∂x
=

∂

∂y

(
∂w

∂x

)
=

∂

∂y
(y2z3 − 4y log(z)) = 2yz3 − 4 log(z)

and
∂2w

∂z2
=

∂

∂z

(
∂w

∂z

)
=

∂

∂z

(
3xy2z2 − 4xy

z

)
= 6xy2z +

4xy

z2
.

Also,
∂2w

∂x∂y
=

∂

∂x

(
∂w

∂y

)
=

∂

∂x
(2xyz3 − 4x log(z)) = 2yz3 − 4 log(z),

and so
∂2w

∂y∂x
=

∂2w

∂x∂y
.

In both of our examples we have seen instances where mixed second partial derivatives,
that is, second-order partial derivatives with respect to two different variables, taken in
different orders are equal. This is not always the case, but does follow if we assume that
both of the mixed partial derivatives in question are continuous.

Definition We say a function f : Rn → R is C2 on an open set U if fxjxi is continuous
on U for each i = 1, 2, . . . , n and j = 1, 2, . . . , n.

Theorem If f is C2 on an open ball containing a point c, then

∂2

∂xj∂xi
f(c) =

∂2

∂xi∂xj
f(c)

for i = 1, 2, . . . , n and j = 1, 2, . . . , n.

Although we have the tools to verify this result, we will leave the justification for a
more advanced course.

We shall see that it is convenient to use a matrix to arrange the second partial deriva-
tives of a function f . If f : Rn → R, there are n2 second partial derivatives and this matrix
will be n× n.

Definition Suppose the second-order partial derivatives of f : Rn → R all exist at the
point c. We call the n× n matrix

Hf(c) =




∂2

∂x21
f(c)

∂2

∂x2∂x1
f(c)

∂2

∂x3∂x1
f(c) · · · ∂2

∂xn∂x1
f(c)

∂2

∂x1∂x2
f(c)

∂2

∂x22
f(c)

∂2

∂x3∂x2
f(c) · · · ∂2

∂xn∂x2
f(c)

∂2

∂x1∂x3
f(c)

∂2

∂x2∂x3
f(c)

∂2

∂x23
f(c) · · · ∂2

∂xn∂x3
f(c)

...
...

...
. . .

...
∂2

∂x1∂xn
f(c)

∂2

∂x2∂xn
f(c)

∂2

∂x3∂xn
f(c) · · · ∂2

∂x2n
f(c)




(3.4.1)

the Hessian of f at c.
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Put another way, the Hessian of f at c is the n× n matrix whose ith row is ∇fxi(c).

Example Suppose f(x, y) = x2y − 3x sin(2y). Then, using our results from above,

Hf(x, y) =

[
fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

]
=

[
2y 2x− 6 cos(y)

2x− 6 cos(2y) 12x sin(2y)

]
.

Thus, for example,

Hf(2, 0) =

[
0 −2

−2 0

]
.

Suppose f : Rn → R is C2 on an open ball B2(c, r) and let h = (h1, h2) be a point
with ‖h‖ < r. If we define ϕ : R → R by ϕ(t) = f(c + th), then ϕ(0) = f(c) and
ϕ(1) = f(c+h). From the one-variable calculus version of Taylor’s theorem, we know that

ϕ(1) = ϕ(0) + ϕ′(0) +
1

2
ϕ′′(s), (3.4.2)

where s is a real number between 0 and 1. Using the chain rule, we have

ϕ′(t) = ∇f(c+ th) · d
dt

(c+ th) = ∇f(c+ th) · h = fx(c+ th)h1 + fy(c+ th)h2 (3.4.3)

and

ϕ′′(t) = h1∇fx(c+ th) · h+ h2∇fy(c+ th) · h
= (h1∇fx(c+ th) + h2∇fy(c+ th) · h

= [h1 h2 ]

[
fxx(c = th) fxy(c+ th)
fyx(c+ th) fyy(c+ th)

] [
h1
h2

]

= hTHf(c+ th)h, (3.4.4)

where we have used the notation

h =

[
h1
h2

]

and
hT = [h1 h2 ] ,

the latter being called the transpose of h (see Problem 12 of Section 1.6). Hence

ϕ′(0) = ∇f(c) · h (3.4.5)

and

ϕ′′(s) =
1

2
hTHf(c+ sh)h, (3.4.6)

so, substituting into (3.4.2), we have

f(c+ h) = ϕ(1) = f(c) +∇f(c) · h+
1

2
hTHf(c+ sh)h. (3.4.7)

This result, a version of Taylor’s theorem, is easily generalized to higher dimensions.
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Theorem Suppose f : Rn → R is C2 on an open ball Bn(c, r) and let h be a point with
‖h‖ < r. Then there exists a real number s between 0 and 1 such that

f(c+ h) = f(c) +∇f(c) · h+
1

2
hTHf(c+ sh)h. (3.4.8)

If we let x = c + h and evaluate the Hessian at c, (3.4.8) becomes a polynomial
approximation for f .

Definition If f : Rn → R is C2 on an open ball about the point c, then we call

P2(x) = f(c) +∇f(c) · (x− c) +
1

2
(x− c)THf(c)(x− c) (3.4.9)

the second-order Taylor polynomial for f at c.

Example To find the second-order Taylor polynomial for f(x, y) = e−2x+y at (0, 0), we
compute

∇f(x, y) = (−2e−2x+y, e−2x+y)

and

Hf(x, y) =

[
4e−2x+y −2e−2x+y

−2e−2x+y e−2x+y

]
,

from which it follows that
∇f(0, 0) = (−2, 1)

and

Hf(0, 0) =

[
4 −2

−2 1

]
.

Then

P2(x, y) = f(0, 0) +∇f(0, 0) · (x, y) + 1

2
[x y ]Hf(0, 0)

[
x
y

]

= 1 + (−2, 1) · (x, y) + 1

2
[x y ]

[
4 −2

−2 1

] [
x
y

]

= 1− 2x+ y =
1

2
[x y ]

[
4x− 2y
−2x+ y

]

= 1− 2x+ y +
1

2
(4x2 − 2xy − 2xy + y2)

= 1− 2x+ y + 2x2 − 2xy +
1

2
y2.

Symmetric matrices

Note that if f : R2 → R is C2 on an open ball about the point c, then the entry in the
ith row and jth column of Hf(c) is equal to the entry in the jth row and ith column of
Hf(c) since

∂2

∂xj∂xi
f(c) =

∂2

∂xi∂xj
f(c).
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Definition We call a matrix M = [aij ] with the property that aij = aji for all i 6= j a
symmetric matrix.

Example The matrices [
2 1
1 5

]

and 

1 2 3
2 4 5
3 5 −7




are both symmetric, while the matrices

[
2 −1
3 4

]

and 


2 1 3
2 3 4

−2 4 −6




are not symmetric.

Example The Hessian of any C2 scalar valued function is a symmetric matrix. For
example, the Hessian of f(x, y) = e−2x+y, namely,

Hf(x, y) =

[
4e−2x+y −2e−2x+y

−2e−2x+y e−2x+y

]
,

is symmetric for any value of (x, y).

Given an n× n symmetric matrix M , the function q : Rn → R defined by

q(x) = xTMx

is a quadratic polynomial. When M is the Hessian of some function f , this is the form of
the quadratic term in the second-order Taylor polynomial for f . In the next section it will
be important to be able to determine when this term is positive for all x 6= 0 or negative
for all x 6= 0.

Definition Let M be an n× n symmetric matrix and define q : Rn → R by

q(x) = xTMx.

We say M is positive definite if q(x) > 0 for all x 6= 0 in Rn, negative definite if q(x) < 0
for all x 6= 0 in Rn, and indefinite if there exists an x 6= 0 for which q(x) > 0 and an x 6= 0
for which q(x) < 0. Otherwise, we say M is nondefinite.
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In general it is not easy to determine to which of these categories a given symmetric
matrix belongs. However, the important special case of 2× 2 matrices is straightforward.
Consider

M =

[
a b
b c

]

and let

q(x, y) = [x y ]M

[
x
y

]
= ax2 + 2bxy + cy2. (3.4.10)

If a 6= 0, then we may complete the square in (3.4.10) to obtain

q(x, y) = a

(
x2 +

2b

a
xy

)
+ cy2

= a

((
x+

b

a
y

)2

− b2

a2
y2

)
+ cy2

= a

(
x+

b

a
y

)2

+

(
c− b2

a

)
y2

= a

(
x+

b

a
y

)2

+
ac− b2

a
y2

= a

(
x+

b

a
y

)2

+
det(M)

a
y2 (3.4.11).

Now suppose det(M) > 0. Then from (3.4.11) we see that q(x, y) > 0 for all (x, y) 6= (0, 0)
if a > 0 and q(x, y) < 0 for all (x, y) 6= (0, 0) if a < 0. That is, M is positive definite if
a > 0 and negative definite if a < 0. If det(M) < 0, then q(1, 0) and q

(
− b

a , 1
)
will have

opposite signs, and so M is indefinite. Finally, suppose det(M) = 0. Then

q(x, y) = a

(
x+

b

a
y

)2

,

so q(x, y) = 0 when x = − b
ay. Moreover, q(x, y) has the same sign as a for all other values

of (x, y). Hence in this case M is nondefinite.
Similar analyses for the case a = 0 give us the following result.

Theorem Suppose

M =

[
a b
b c

]
.

If det(M) > 0, then M is positive definite if a > 0 and negative definite if a < 0. If
det(M) < 0, then M is indefinite. If det(M) = 0, then M is nondefinite.

Example The matrix

M =

[
2 1
1 3

]

is positive definite since det(M) = 5 > 0 and 2 > 0.
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Example The matrix

M =

[
−2 1
1 −4

]

is negative definite since det(M) = 7 > 0 and −2 < 0.

Example The matrix

M =

[
−3 1
1 2

]

is indefinite since det(M) = −7 < 0.

Example The matrix

M =

[
4 2
2 1

]

is nondefinite since det(M) = 0.

In the next section we will see how these ideas help us identify local extreme values
for scalar valued functions of two variables.

Problems

1. Let f(x, y) = x3y2 − 4x2e−3y. Find the following.

(a)
∂2

∂x∂y
f(x, y) (b)

∂2

∂y∂x
f(x, y)

(c)
∂2

∂x2
f(x, y) (d)

∂3

∂x∂y∂x
f(x, y)

(e)
∂3

∂x∂y2
f(x, y) (f)

∂3

∂y3
f(x, y)

(g) fyy(x, y) (h) fyxy(x, y)

2. Let f(x, y, z) =
xy

x2 + y2 + z2
. Find the following.

(a)
∂2

∂z∂x
f(x, y, z) (b)

∂2

∂y∂z
f(x, y, z)

(c)
∂2

∂z2
f(x, y, z) (d)

∂3

∂x∂y∂z
f(x, y, z)

(e) fzyx(x, y, z) (f) fyyy(x, y, z)

3. Find the Hessian of each of the following functions.

(a) f(x, y) = 3x2y − 4xy3 (b) g(x, y) = 4e−x cos(3y)

(c) g(x, y, z) = 4xy2z3 (d) f(x, y, z) = − log(x2 + y2 + z2)

4. Find the second-order Taylor polynomial for each of the following at the point c.

(a) f(x, y) = xe−y, c = (0, 0) (b) g(x, y) = x sin(x+ y), c = (0, 0)
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(c) f(x, y) =
1

x+ y
, c = (1, 1) (d) g(x, y, z) = ex−2y+3z, c = (0, 0, 0)

5. Classify each of the following symmetric 2 × 2 matrices as either positive definite,
negative definite, indefinite, or nondefinite.

(a)

[
3 2
2 4

]
(b)

[
1 2
2 2

]

(c)

[
−2 3
3 −5

]
(d)

[
0 1
1 0

]

(e)

[
1 0
0 1

]
(f)

[
8 4
4 2

]

6. Let M be an n× n symmetric nondefinite matrix and define q : Rn → R by

q(x) = xTMx.

Explain why (1) there exists a vector a 6= 0 such that q(a) = 0 and (2) either q(x) ≥ 0
for all x in Rn or q(x) ≤ 0 for all x in Rn.

7. Suppose f : Rn → R is C2 on an open ball Bn(c, r), ∇f(c) = 0, and Hf(x) is positive
definite for all x in Bn(c, r). Show that f(c) < f(x) for all x in Bn(c, r). What would
happen if Hf(x) were negative definite for all x in Bn(c, r)? What does this say in
the case n = 1?

8. Let

f(x, y) =




xy(x2 − y2)

x2 + y2
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

(a) Show that fx(0, y) = −y for all y.

(b) Show that fy(x, 0) = x for all x.

(c) Show that fyx(0, 0) 6= fxy(0, 0).

(d) Is f C2?
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Extreme Values

After a few preliminary results and definitions, we will apply our work from the previous
sections to the problem of finding maximum and minimum values of scalar-valued functions
of several variables. The story here parallels to a great extent the story from one-variable
calculus, with the inevitable twists and turns due to the presence of additional variables.
We will begin with a definition very similar to the analogous definition for functions of a
single variable.

The Extreme Value Theorem

Definition Suppose f : Rn → R is defined on a set S. We say f has a maximum value
of M at c if f(c) =M and M ≥ f(x) for all x in S. We say f has a minimum value of m
at c if f(c) = m and m ≤ f(x) for all x in S.

The maximum and minimum values of the previous definition are sometimes referred
to as global maximum and minimum values in order to distinguish them from the local
maximum and minimum values of the next definition.

Definition Suppose f : Rn → R is defined on a open set U . We say f has a local
maximum value of M at c if f(c) =M and M ≥ f(x) for all x in Bn(c, r) for some r > 0.
We say f has a local minimum value of m at c if f(c) = m and m ≤ f(x) for all x in
Bn(c, r) for some r > 0.

We will say extreme value, or global extreme value, when referring to a value of f
which is either a global maximum or a global minimum value, and local extreme value
when referring to a value which is either a local maximum or a local minimum value.

In one-variable calculus, the Extreme Value Theorem, the statement that every con-
tinuous function on a finite closed interval has a maximum and a minimum value, was
extremely useful in searching for extreme values. There is a similar result for our current
situation, but first we need the following definition.

Definition We say a set S in Rn is bounded if there exists an r > 0 such that S is
contained in the open ball Bn(0, r).

Equivalently, a set S is bounded as long as there is a fixed distance r such that no
point in S is farther away from the origin than r.

Example Any open or closed ball in Rn is a bounded set.

Example The infinite rectangle

{(x, y) : 1 < x < 3,−∞ < y <∞}
is not bounded.

1 Copyright c© by Dan Sloughter 2001
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Extreme Value Theorem Suppose f : Rn → R is continuous on an open set U . If S
is a closed and bounded subset of U , than f has a maximum value and a minimum value
on S.

We leave the justification of this theorem for a more advanced course.
Our work now is to find criteria for locating candidates for points where local extreme

values might occur, and then to classify these points once we have found them. To begin,
suppose we know f : Rn → R is differentiable on an open set U and that it has a local
extreme value at c. Then for any unit vector u, the function g : R → R defined by
g(t) = f(c+ tu) must have an extreme value at t = 0. Hence, from a result in one-variable
calculus, we must have

0 = g′(0) = Duf(c) = ∇f(c) · u.
Since u was an arbitrary unit vector in Rn, we have, in particular,

0 = ∇f(c) · ek =
∂

∂xi
f(c)

for i = 1, 2, · · · , n. That is, we must have ∇f(c) = 0. Note that, by itself, ∇f(c) = 0 only
says that the slope of the graph of f is 0 in the direction of the standard basis vectors, but
this in fact implies that the slope is 0 in all directions because Duf(c) = ∇f(c) ·u for any
unit vector u.

Theorem If f : Rn → R is differentiable on an open set U and has a local extreme value
at c, then ∇f(c) = 0.

Definition If f : Rn → R is differentiable at c and ∇f(c) = 0, then we call c a critical
point of f . We call a point c at which f is not differentiable a singular point of f .

Recall that to find the extreme values of a continuous function f : R → R on a closed
interval, we need only to evaluate f at all critical and singular points inside the interval
as well as at the endpoints of the interval, and then inspect these values to identify the
largest and smallest. The story is similar in the situation of a function f : Rn → R which
is defined on a closed and bounded set S and is continuous on some open set containing
S, except instead of having endpoints to consider, we have the entire boundary of S to
consider.

Definition Let S be a set in Rn. We call a point a in Rn a boundary point of S if for
every r > 0, the open ball Bn(a, r) contains both points in S and points outside of S. We
call the set of all boundary points of S the boundary of S.

Example The boundary of the closed set

B̄2((0, 0), 3) = {(x, y) : x2 + y2 ≤ 9}

is the circle
S1((0, 0), 3) = {(x, y) : x2 + y2 = 9}.

Example In general, the boundary of the closed ball B̄n(a, r) is the sphere Sn−1(a, r).
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Example The boundary of the closed rectangle

R = {(x, y) : 1 ≤ x ≤ 3, 2 ≤ y ≤ 5}

consists of the line segments from (1, 2) to (3, 2), (3, 2) to (3, 5), (3, 5) to (1, 5), and (1, 5)
to (1, 2).

Example Suppose we wish to find the global extreme values for the function f(x, y) =
x2 + y2 on the closed set

D = {(x, y) : x2 + 4y2 ≤ 4}.
We first find all the critical and singular points. Now

∇f(x, y) = (2x, 2y),

so
∇f(x, y) = (0, 0)

if and only if
2x = 0,

2y = 0.

Hence the only critical point is (0, 0). There are no singular points, but we must consider
the boundary of S, the ellipse

B = {(x, y) : x2 + 4y2 = 4}.

Now we may use
ϕ(t) = (2 cos(t), sin(t)),

0 ≤ t ≤ 2π, to parametrize B. It follows that any extreme value of f occurring on B will
also be an extreme value of

g(t) = f(ϕ(t))

= f(2 cos(t), sin(t))

= 4 cos2(t) + sin2(t)

= 4 cos2(t) + (1− cos2(t))

= 3 cos2(t) + 1

on the closed interval [0, 2π]. Now

g′(t) = −6 cos(t) sin(t),

so the critical points of g occur at points t in (0, 2π) where either cos(t) = 0 or sin(t) = 0.
Hence the critical points of g are t = π

2 , t = π, and t = 3π
2 . Moreover, we need to consider

the endpoints t = 0 and t = 2π. Hence we have four more candidates for the location
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Figure 3.5.1 Graph of f(x, y) = x2 + y2 on D = {(x, y) : x2 + 4y2 ≤ 4}

of extreme values, namely, ϕ(0) = ϕ(2π) = (2, 0), ϕ
(
π
2

)
= (0, 1), ϕ(π) = (−2, 0), and

ϕ
(
3π
2

)
= (0,−1). Evaluating f at these five points, we have

f(0, 0) = 0,

f(2, 0) = 4,

f(0, 1) = 1,

f(−2, 0) = 4,

and
f(0,−1) = 1.

Comparing these values, we see that f has a maximum value of 4 at (2, 0) and (−2, 0) and
a minimum value of 0 at (0, 0). See Figure 3.5.1 for the graph of f on the set D.

As the previous example shows, dealing with the boundary of a region can require a
significant amount of work. In this example we were helped by the fact that the boundary
was one-dimensional and was easily parametrized. This is not always the case. For exam-
ple, the boundary of the closed ball B̄3((0, 0, 0), 1) in R3 is the sphere S2((0, 0, 0), 1) with
equation

x2 + y2 + z2 = 1,

a two-dimensional surface. We shall see in Chapter 4 that it is possible to parametrize such
surfaces, but that would still leave us with a two-dimensional problem. We will return to
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this problem later in this section when we present a much more elegant solution based on
our knowledge of level sets and gradient vectors.

Finding local extrema

For now we will turn our attention to identifying local extreme values. Recall from one-
variable calculus that one of the most useful ways to identify a local extreme value is
through the second derivative test. That is, if c is a critical point of ϕ : R → R, then
ϕ′′(c) > 0 implies that ϕ has a local minimum at c and ϕ′′(c) < 0 implies ϕ has a local
maximum at c. Taylor’s theorem provides an easy way to see why this is so. For example,
suppose c is a critical point of ϕ, ϕ′′ is continuous on an open interval containing c, and
ϕ′′(c) > 0. Then there is an interval I = (c − r, c + r), r > 0, such that ϕ′′ is continuous
on I and ϕ′′(t) > 0 for all t in I. By Taylor’s theorem, for any h with |h| < r, there is a
number s between c and c+ h such that

ϕ(c+ h) = ϕ(c) + ϕ′(c)h+
1

2
ϕ′′(s)h2 = ϕ(c) +

1

2
ϕ′′(c)h2 > ϕ(c), (3.5.1)

where we have used the fact that ϕ′(c) = 0 since c is a critical point of ϕ. Hence ϕ(c) is a
local minimum value of ϕ.

Similar considerations lead to a second derivative test for a function f : Rn → R.
Suppose c is a critical point of f , f is C2 on an open set containing c, and Hf(c) is
positive definite. Let Bn(c, r), r > 0, be an open ball on which f is C2 and Hf(c) is
positive definite. Then, by the version of Taylor’s theorem in Section 3.4, for any h with
‖h‖ < r, there is a number s between 0 and 1 such that

f(c+h) = f(c)+∇f(c) ·h+ 1

2
hTHf(c+sh)h = f(c)+

1

2
hTHf(c+sh)h > f(c), (3.5.2)

where ∇f(c) = 0 since c is a critical point of f , and the final inequality follows from
the assumption that Hf(x) is positive definite for x in Bn(c, r). Hence f(c) is a local
minimum value of f . The same argument shows that if Hf(c) is negative definite, then
f(c) is a local maximum value of f . If Hf(c) is indefinite, then there will be arbitrarily
small h for which

1

2
hTHf(c+ sh)h > 0

and arbitrarily small h for which

1

2
hTHf(c+ sh)h < 0.

Hence there will be arbitrarily small h for which f(c + h) > f(c) and arbitrarily small
h for which f(c + h) < f(c). In this case, f(c) is neither a local minimum nor a local
maximum. In this case, we call c a saddle point. Finally, if Hf(c) is nondefinite, then
we do not have enough information to classify the critical point. We may now state the
second derivative test.
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Second derivative test Suppose f : Rn → R is C2 on an open set U . If c is a critical
point of f in U , then f(c)is a local minimum value of f if Hf(c) is positive definite, f(c) is
a local maximum value of f if Hf(c) is negative definite, and c is a saddle point if Hf(c)
is indefinite. If Hf(c) is nondefinite, then more information is needed in order to classify
c.

The next example gives an indication for the source of the term saddle point.

Example To find the local extreme values of f(x, y) = x2 − y2, we begin by finding

∇f(x, y) = (2x,−2y).

Now

∇f(x, y) = (0, 0)

if and only if
2x = 0,

−2y = 0,

which occurs if and only if x = 0 and y = 0. Thus f has the single critical point (0, 0).
Now

Hf(x, y) =

[
2 0
0 −2

]
,

so

Hf(0, 0) =

[
2 0
0 −2

]
.

Thus

det(Hf(0, 0)) = (2)(−2) = −4 < 0.

Hence Hf(0, 0) is indefinite and so, by the second derivative test, (0, 0) is a saddle point.
Looking at the graph of f in Figure 3.5.2, we can see the reason for this: since f(x, 0) = x2

and f(0, y) = −y2, the slice of the graph of f above the x-axis is a parabola opening
upward while the slice of the graph of f above the y-axis is a parabola opening downward.

Example Consider f(x, y) = xye−(x2+y2). Then

∇f(x, y) = e−(x2+y2)(y − 2x2y, x− 2xy2).

Hence, since e−(x2+y2) > 0 for all (x, y),

∇f(x, y) = (0, 0)

if and only if
y − 2x2y = 0,

x− 2xy2 = 0,
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Figure 3.5.2 Graph of f(x, y) = x2 − y2

which occurs if and only if
y(1− 2x2) = 0,

x(1− 2y2) = 0.

Now the first equation is satisfied if either y = 0 or 1− 2x2 = 0. If y = 0, then the second
equation becomes x = 0, so (0, 0) is a critical point. If 1− 2x2 = 0, then either x = − 1√

2

or x = 1√
2
. For either of these values of x, the second equation is satisfied if and only

if 1 − 2y2 = 0, that is, y = − 1√
2
or y = 1√

2
. Hence we have four more critical points:(

− 1√
2
,− 1√

2

)
,
(
− 1√

2
, 1√

2

)
,
(

1√
2
,− 1√

2

)
, and

(
1√
2
, 1√

2

)
. Now

Hf(x, y) = e−(x2+y2)

[
4x3y − 6xy 4x2y2 − 2x2 − 2y2 + 1

4x2y2 − 2x2 − 2y2 + 1 4y3x− 6xy

]
,

so

Hf(0, 0) =

[
0 1
1 0

]
,

Hf

(
− 1√

2
,− 1√

2

)
= Hf

(
1√
2
,
1√
2

)
= e−1

[
−2 0
0 −2

]
,
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Figure 3.5.3 Graph of f(x, y) = xye−(x2+y2)

and

Hf

(
− 1√

2
,
1√
2

)
= Hf

(
1√
2
,− 1√

2

)
= e−1

[
2 0
0 2

]
.

Since

det

[
0 1
1 0

]
= −1 < 0,

det

[
−2e−1 0

0 −2e−1

]
= 4e−2 > 0,

and

det

[
2e−1 0
0 2e−1

]
= 4e−2 > 0,

we see that Hf(0, 0) is indefinite, Hf
(
− 1√

2
,− 1√

2

)
and Hf

(
1√
2
, 1√

2

)
are negative defi-

nite, and Hf
(
− 1√

2
, 1√

2

)
and Hf

(
− 1√

2
, 1√

2

)
are positive definite. Thus (0, 0) is a saddle

point of f , f has local maximums of 1
2e

−1 at both
(
− 1√

2
,− 1√

2

)
and

(
1√
2
, 1√

2

)
, and local

minimums of − 1
2e

−1 at
(
− 1√

2
, 1√

2

)
and

(
1√
2
,− 1√

2

)
.See Figure 3.5.3.

Finding global extrema

The graph of f(x, y) = xye−(x2+y2) in Figure 3.5.3 suggests that local extreme values
found in the previous example are in fact global extreme values for f on all of R2. We may
verify that this in fact the case as follows. First note that, since

lim
r→∞

r2e−r2 = 0,
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we may choose R large enough so that

r2e−r2 <
1

2
e−1

whenever r ≥ R. Now for any point (x, y) with ‖(x, y)‖ = r ≥ R we have

|f(x, y)| = |xye−(x2+y2)| = |x||y|e−(x2+y2) ≤ r2e−r2 <
1

2
e−1.

Hence f(x, y) is between − 1
2e

−1 and 1
2e

−1 for all points (x, y) outside of the closed disk
D = B̄2((0, 0), R). Moreover, since f(x, y) is between − 1

2e
−1 and 1

2e
−1 for all points (x, y)

on the boundary of D, f has a minimum value of − 1
2e

−1 and a maximum value of 1
2e

−1

on D. Hence these values are actually the global extreme values of f on all of R2.

Example A farmer wishes to build a rectangular storage bin, without a top, with a
volume of 500 cubic meters using the least amount of material possible. If we let x and y
be the dimensions of the base of the bin and z be the height, all measured in meters, then
the farmer wishes to minimize the surface area of the bin, given by

S = xy + 2xz + 2yz, (3.5.3)

subject to the constraint on the volume, namely,

500 = xyz.

Solving for z in the latter expression and substituting in to (3.5.3), we have

S = xy + 2x

(
500

xy

)
+ 2y

(
500

xy

)
= xy +

1000

y
+

1000

x
.

This is the function we need to minimize on the infinite open rectangle

R = {(x, y) : x > 0, y > 0}.

Now
∂S

∂x
= y − 1000

x2

and
∂S

∂y
= x− 1000

y2

so to find the critical points of S we need to solve

y − 1000

x2
= 0,

x− 1000

y2
= 0.
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Solving for y in the first of these, we have

y =
1000

x2
,

which, when substituted into the second, gives us

x− x4

1000
= 0.

Hence we want

x

(
1− x3

1000

)
= 0,

from which it follows that either x = 0 or x = 10. Since the first of these will not give us
a point in R, we have x = 10 and

y =
1000

102
= 10.

Thus the only critical point is (10, 10). Now

HS(x, y) =



2000

x3
1

1
2000

y3


 ,

so

HS(10, 10) =

[
2 1
1 2

]
.

Thus
det(HS(10, 10)) = 3,

and so HS(10, 10) is positive definite. This shows that S has a local minimum of

S
∣∣
x=10,y=10

= (10)(10) +
1000

10
+

1000

10
= 300

at (x, y) = (10, 10). To show that this is actually the global minimum value of S, we
proceed as follows. Let D be the closed rectangle

D = {(x, y) : 1 ≤ x ≤ 400, 1 ≤ y ≤ 400}.

Now if 0 < x ≤ 1, then
1000

x
≥ 1000,

and so S > 300. Similarly, if 0 < y ≤ 1, then S > 300. Moreover, if x ≥ 400 and y ≥ 1,
then xy ≥ 400, and so S > 300. Similarly, if y ≥ 400 and x ≥ 1, then S > 300. Hence
S > 300 for all (x, y) outside of D and for all (x, y) on the boundary of D. Hence S has a
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Figure 3.5.4 Graph of S = xy +
1000
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y

global minimum of 300 on D, which, from the preceding observations, must in fact be the
global minimum of S on all of R. See the graph of S in Figure 3.5.4. Finally, when x = 10
and y = 10, we have

z =
500

(10)(10)
= 5,

so the farmer should build her bin to have a base of 10 meters by 10 meters and a height
of 5 meters.

Lagrange multipliers

This last example has much in common with our first example in that they both involve
finding extreme values of a function restricted to a lower-dimensional subset. In our first
example, we had to find the extreme values of f(x, y) = x2 + y2 restricted to the one-
dimensional ellipse with equation x2 + 4y2 = 4; in the example we just finished, we had
to find the minimum value of S = xy+ 2xz + 2yz, a function of three variables, restricted
to the two-dimensional surface defined by the equation xyz = 500. Although they were
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similar, we approached these problems somewhat differently. In the first, we parametrized
the ellipse and then maximized the composition of f with this parametrization; in the
latter, we solved for z in terms of x and y and then substituted into the formula for S to
make S effectively a function of two variables. Now we will describe a general approach
which applies to both situations. Often, but not always, this method is easier to apply
then the other two techniques. In practice, one tries to select the method that will yield
an answer with the least resistance.

For the general case, consider two differentiable functions, f : Rn → R and g : Rn → R,
and suppose we wish to find the extreme values of f on the level set S of g determined by
the constraint g(x) = 0. If f has an extreme value at a point c on S, then f(c) must be an
extreme value of f along any curve passing through c. Thus if ϕ : R → Rn parametrizes
a curve in S with ϕ(b) = c, then the function h(t) = f(ϕ(t)) has an extreme value at b.
Hence

0 = h′(b) = ∇f(ϕ(b)) ·Dϕ(b) = ∇f(c) ·Dϕ(b). (3.5.4)

Since (3.5.4) holds for any curve in S through c and Dϕ(b) is tangent to the given curve
at c, it follows that ∇f(c) is orthogonal to the tangent hyperplane to S at c. But S is a
level set of g, so we know from our work in Section 3.3 that the vector ∇g(c), provided
it is nonzero, is a normal vector for the tangent hyperplane to S at c. Hence ∇f(c) and
∇g(c) must be parallel. That is, there must exist a scalar λ such that

∇f(c) = λ∇f(c). (3.5.5)

The idea now is that in looking for extreme values, we need only consider points c for
which both g(c) = 0 and ∇f(c) = λ∇g(c) for some scalar λ. The scalar λ is known as a
Lagrange multiplier, and this method for finding extreme values subject to a constraining
equation is known as the method of Lagrange multipliers.

Example Suppose that the temperature at a point (x, y, z) on the unit sphere S =
S2((0, 0, 0), 1) is given by

T (x, y, z) = 30 + 5(x+ z).

To find the extreme values of T , we first define

g(x, y, z) = x2 + y2 + z2 − 1,

thus making S the level surface of g specified by g(x, y, z) = 0. Now

∇f(x, y, z) = (5, 0, 5)

and
∇g(x, y, z) = (2x, 2y, 2z).

The candidates for the locations of extreme values will be solutions of the equations

∇f(x, y, z) = λg(x, y, z),

g(x, y, z) = 0,
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that is,
(5, 0, 5) = λ(2x, 2y, 2z),

x2 + y2 + z2 − 1 = 0.

Hence we need to solve the following system of four equation in four unknowns:

5 = 2λx,

0 = 2λy,

5 = 2λz,

x2 + y2 + z2 = 1.

Now 5 = 2λx implies that λ 6= 0, and so 0 = 2λy implies that y = 0. Moreover, 5 = 2λx
and 5 = 2λz imply that 2λx = 2λz, from which it follows, since λ 6= 0, that x = z.
Substituting these results into the final equation, we have

1 = x2 + y2 + z2 = x2 + 0 + x2 = 2x2.

Thus x = − 1√
2
or x = 1√

2
, and we have two solutions for our equations,

(
− 1√

2
, 0,− 1√

2

)

and (
1√
2
, 0,

1√
2

)

At this point, since T is continuous and S is closed and bounded, we need only evaluate
T at these points and compare their values. Now

T

(
− 1√

2
, 0,− 1√

2

)
= 30− 5

√
2 = 22.93

and

T

(
1√
2
, 0,

1√
2

)
= 30 + 5

√
2 = 37.07,

where the final values have been rounded to two decimal places, so the maximum tem-

perature on the sphere is 37.07 at
(

1√
2
, 0, 1√

2

)
and the minimum temperature is 22.93 at

(
− 1√

2
, 0,− 1√

2

)
.

Example Suppose the farmer in our earlier example is faced with the opposite problem:
Given 300 square meters of material, what are the dimensions of the rectangular bin,
without a top, that holds the largest volume? If we again let x and y be the dimensions
of the base of the bin and z be its height, then we want to maximize

V = xyz
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on the region where x > 0, y > 0, and z > 0, subject to the constraint that

xy + 2xz + 2yz = 300.

If we let
g(x, y, z) = xy + 2xz + 2yz − 300,

then our problem is to maximize V subject to the constraint g(x, y, z) = 0. Now

∇V = (yz, xz, xy)

and
∇g(x, y, z) = (y + 2z, x+ 2z, 2x+ 2y),

so the system of equations
∇V = λ∇g(x, y, z),
g(x, y, z) = 0,

becomes the system

yz = λ(y + 2z), (3.5.6)

xz = λ(x+ 2z), (3.5.7)

xy = λ(2x+ 2y), (3.5.8)

xy+2xz + 2yz = 300. (3.5.9)

Equations (3.5.6) and (3.5.7) imply that

λ =
yx

y + 2z

and
λ =

xz

x+ 2z,

so
yz

y + 2z
=

xz

x+ 2z
,

that is,
y

y + 2z
=

x

x+ 2z
.

Hence
xy + 2yz = xy + 2xz.

Thus 2yz = 2xz, so x = y. Substituting this result into (3.5.8) gives us x2 = 4λx, from
which it follows that x = 4λ. Substituting into (3.5.7), we have

4λz = λ(4λ+ 2z) = 4λ2 + 2λz.
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Hence 2λz = 4λ2, so z = 2λ. Putting x = 4λ, y = 4λ, and z = 2λ into (3.5.9) yields the
equation

16λ2 + 16λ2 + 16λ2 = 300.

Thus 48λ2 = 300, so

λ = ±
√

300

48
= ±

√
25

4
= ±5

2
.

Now x, y, and z are all positive, so we must have λ = 5
2 , giving us x = 10, y = 10, and

z = 5. To show that we have the location of the maximum value of V , let

S = {(x, y, z) : g(x, y, z) = 0, x > 0, y > 0, z > 0}

and let D be that part of S for which 1 ≤ x ≤ 150, 1 ≤ y ≤ 150, and 1 ≤ z ≤ 150. Note
that if (x, y, z) lies on S, then

300 = xy + 2xz + 2yz

and so xy ≤ 300, xz ≤ 150, and yz ≤ 150. Moreover,

z =
300− xy

2x+ 2y
.

Now if either x ≥ 150 or y ≥ 150, then

z ≤ 300

300
≤ 1,

so
V = xyz ≤ (300)(1) = 300.

If x ≤ 1,
V = xyz ≤ (1)(150) = 150

and, similarly, if y ≤ 1,
V = yxz ≤ (1)(150) = 150.

Thus if (x, y, z) is either on the boundary of D or outside of D, then V ≤ 300. Since

V
∣∣
(x,y,z)=(10,10,5)

= 500,

it follows that the global maximum of V on S must occur inside D. In fact, this maximum
value must be 500 cubic meters, occurring when x = 10 meters, y = 10 meters, and z = 5
meters.

Problems

1. Find the maximum and minimum values of f(x, y) = xy on the set D = {(x, y) :
x2 + y2 ≤ 1}.
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2. Find the maximum and minimum values of f(x, y) = 8 − x2 − y2 on the set D =
{(x, y) : x2 + 9y2 ≤ 9}.

3. Find the maximum and minimum values of f(x, y) = x2 + 3xy + y2 on the set D =
{(x, y) : x2 + y2 ≤ 4}.

4. Find all local extreme values of f(x, y) = xe−(x2+y2).

5. Find all local extreme values of g(x, y) = x2e−(x2+y2).

6. Find all local extreme values of g(x, y) =
1

1 + x2 + y2
.

7. Find all local extreme values of f(x, y) = 4xy − 2x2 − y4.

8. Find all local extreme values of h(x, y) = 2x4 + y4 − x2 − 2y2.

9. Find all local extreme values of f(x, y, z) = x2 + y2 + z2.

10. Find all local extreme values of g(x, y, z) = x2 + y2 − z2.

11. A farmer wishes to build a rectangular bin, with a top, to hold a volume of 1000 cubic
meters. Find the dimensions of the bin that will minimize the amount of material
needed in its construction.

12. A farmer wishes to build a rectangular bin, with a top, using 600 square meters of
material. Find the dimensions of the bin that will maximize the volume.

13. Find the extreme values of f(x, y, z) = x+y+ z on the sphere with equation x2+y2+
z2 = 1.

14. Find the minimum distance in R2 from the origin to the line with equation 3x+2y = 4.

15. Find the minimum distance in R3 from the origin to the plane with equation 2x+4y+
z = 6.

16. Find the minimum distance in R2 from the origin to the curve with equation xy = 1.

17. The ellipsoid with equation x2 + 2y2 + z2 = 4 is heated so that its temperature at
(x, y, z) is given by T (x, y, z) = 70+ 10(x− z). Find the hottest and coldest points on
the ellipsoid.

18. Suppose an airline requires that the sum of the length, width, and height of carry-on
luggage cannot exceed 45 inches (assuming the luggage is in the shape of a rectangular
box). Find the dimensions of a piece of carry-on luggage that has the maximum
volume.

19. Let f(x, y) = (y − 4x2)(y − x2).

(a) Verify that (0, 0) is a critical point of f .

(b) Show that Hf(0, 0) is nondefinite.

(c) Show that along any line through the origin, f has a local minimum at (0, 0).

(d) Find a curve through the origin such that, along the curve, f has a local maximum
at (0, 0). Note that this shows that (0, 0) is a saddle point.
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20. Let f(x, y) = (x − y)2. Find all critical points of f and categorize them according
as they are either saddle points or the location of local extreme values. Is the second
derivative test useful in this case?

21. Let g(x, y) = sin(x2 + y2). Find all critical points of g. Which critical points are the
location of local maximums? Local minimums? Are there any saddle points?

22. What does a plot of the gradient vectors look like around a saddle point of a function
f : R2 → R? You might look at some examples, like f(x, y) = x2 − y2, f(x, y) = xy,

or even f(x, y) = xye−(x2+y2).

23. Given n points (x1, y1), (x2, y2), . . . , (xn, yn) in R2, the line with equation y = mx+ b
which minimizes

L(m, b) =

n∑

i=1

(y1 − (mxi + b))2

is called the least squares line.

(a) Give a geometric interpretation for L(m, b).

(b) Show that the parameters of the least squares line are

m =

n
n∑

i=1

xiyi −
(

n∑

i=1

xi

)(
n∑

i=1

yi

)

n
n∑

i=1

x2i −
(

n∑

i=1

xi

)2

and

b = ȳ −mx̄,

where

ȳ =
1

n

n∑

i=1

yi

and

x̄ =
1

n

n∑

i=1

xi.

24. The following table is taken from a report prepared in the 1960’s to study the effect
of leaks of radioactive waste from storage bins at the nuclear facilities at Hanford,
Washington, on the cancer rates in nine Oregon counties which border the Columbia
River. The table gives an index of exposure, which takes into account such things as
distance from the Hanford facilities and the distance of the population from the river,
along with the cancer mortality rate per 100,000 people.
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County Index of Exposure Cancer Mortality Rate

Umatilla 2.49 147.1
Morrow 2.57 130.1
Gilliam 3.41 129.9
Sherman 1.25 113.5
Wasco 1.62 137.5
Hood River 3.83 162.3
Portland 11.64 207.5
Columbia 6.41 177.9
Clatsop 8.34 210.3

Using Problem 22, find the least squares line for this data (let the index of exposure be
the x data). Plot the points along with the line.
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The Calculus of Functions

of

Section 3.6

Definite Integrals

We will first define the definite integral for a function f : R2 → R and later indicate how
the definition may be extended to functions of three or more variables.

Cartesian products

We will find the following notation useful. Given two sets of real numbers A and B, we
define the Cartesian product of A and B to be the set

A×B = {(x, y) : x ∈ A, y ∈ B}. (3.6.1)

For example, if A = {1, 2, 3} and B = {5, 6}, then

A×B = {(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6)}.

In particular, if a < b, c < d, A = [a, b], and B = [c, d], then A × B = [a, b] × [c, d] is the
closed rectangle

{(x, y) : a ≤ x ≤ b, c ≤ y ≤ d},
as shown in Figure 3.6.1.

a

c

d

b

Figure 3.6.1 The closed rectangle [a, b]× [c, d]

More generally, given real numbers ai < bi, i = 1, 2, 3, . . . , n, we may write

[a1, b1]× [a2, b2]× · · · [an, bn]

1 Copyright c© by Dan Sloughter 2001



2 Definite Integrals Section 3.6

for the closed rectangle

{(x1, x2, . . . , xn) : ai ≤ xi ≤ bi, i = 1, 2, . . . , n}
and

(a1, b1)× (a2, b2)× · · · (an, bn)
for the open rectangle

{(x1, x2, . . . , xn) : ai < xi < bi, i = 1, 2, . . . , n}.

Definite integrals on rectangles

Given a < b and c < d, let
D = [a, b]× [c, d]

and suppose f : R2 → R is defined on all of D. Moreover, we suppose f is bounded on
D, that is, there exist constants m and M such that m ≤ f(x, y) ≤ M for all (x, y) in
D. In particular, the Extreme Value Theorem implies that f is bounded on D if f is
continuous on D. Our definition of the definite integral of f over the rectangle D will
follow the definition from one-variable calculus. Given positive integers m and n, we let P
be a partition of [a, b] into m intervals, that is, a set P = {x0, x1, . . . , xm} where

a = x0 < x1 < · · · < xm = b, (3.6.2)

and we let Q be a partition of [c, d] into n intervals, that is, a set Q = {y0, y1, . . . , yn}
where

a = y0 < y1 < · · · < yn = b. (3.6.3)

We will let P ×Q denote the partition of D into mn rectangles

Dij = [xi−1, xi]× [yj−1, yj ], (3.6.4)

where i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Note that Dij has area ∆xi∆yj , where

∆xi = xi − xi−1 (3.6.5)

and
∆yj = yj − yj−1. (3.6.6)

An example is shown in Figure 3.6.2.

a

c

d

b

D42

Figure 3.6.2 A partition of a rectangle [a, b]× [c, d]
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Now let mij be the largest real number with the property that mij ≤ f(x, y) for all
(x, y) in Dij andMij be the smallest real number with the property that f(x, y) ≤Mij for
all (x, y) inDij . Note that if f is continuous onD, thenmij is simply the minimum value of
f on Dij andMij is the maximum value of f on Dij , both of which are guaranteed to exist
by the Extreme Value Theorem. If f is not continuous, our assumption that f is bounded
nevertheless guarantees the existence of the mij and Mij , although the justification for
this statement lies beyond the scope of this book.

We may now define the lower sum, L(f, P × Q), for f with respect to the partition
P ×Q by

L(f, P ×Q) =

m∑

i=1

n∑

j=1

mij∆xiyj (3.6.7)

and the upper sum, U(f, P ×Q), for f with respect to the partition P ×Q by

U(f, P ×Q) =
m∑

i=1

n∑

j=1

Mij∆xiyj . (3.6.8)

Geometrically, if f(x, y) ≥ 0 for all (x, y) in D and V is the volume of the region which
lies beneath the graph of f and above the rectangle D, then L(f, P ×Q) and U(f, P ×Q)
represent lower and upper bounds, respectively, for V . (See Figure 3.6.3 for an example
of one term of a lower sum). Moreover, we should expect that these bounds can be made
arbitrarily close to V using sufficiently fine partitions P and Q. In part this implies that we
may characterize V as the only real number which lies between L(f, P×Q) and U(f, P×Q)
for all choices of partitions P and Q. This is the basis for the following definition.

Definition Suppose f : R2 → R is bounded on the rectangle D = [a, b] × [c, d]. With
the notation as above, we say f is integrable on D if there exists a unique real number I
such that

L(f, P ×Q) ≤ I ≤ U(f, P ×Q) (3.6.9)

for all partitions P of [a, b] and Q of [c, d]. If f is integrable on D, we call I the definite
integral of f on D, which we denote

I =

∫ ∫

D

f(x, y)dxdy. (3.6.10)

Geometrically, if f(x, y) ≥ 0 for all (x, y) in D, we may think of the definite integral
of f on D as the volume of the region in R3 which lies beneath the graph of f and above
the rectangle D. Other interpretations include total mass of the rectangle D (if f(x, y)
represents the density of mass at the point (x, y)) and total electric charge of the rectangle
D (if f(x, y) represents the charge density at the point (x, y)).

Example Suppose f(x, y) = x2 + y2 and D = [0, 1]× [0, 3]. If we let

P = {0, 1
2
, 1}
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Figure 3.6.3 Graph of f(x, y) = x2 + y2 showing one term of a lower sum

and

Q = {0, 1, 2, 3},

then the minimum value of f on each rectangle of the partition P ×Q occurs at the lower
left-hand corner of the rectangle and the maximum value of f occurs at the upper right-
hand corner of the rectangle. See Figure 3.6.3 for a picture of one term of the lower sum.
Hence

L(f, P ×Q) = f(0, 0)× 1

2
× 1 + f

(
1

2
, 0

)
× 1

2
× 1 + f(0, 1)× 1

2
× 1

+ f

(
1

2
, 1

)
× 1

2
× 1 + f(0, 2)× 1

2
× 1 + f

(
1

2
, 2

)
× 1

2
× 1

= 0 +
1

8
+

1

2
+

5

8
+ 2 +

17

8

=
43

8
= 5.375

and

U(f, P ×Q) = f

(
1

2
, 1

)
× 1

2
× 1 + f(1, 1)× 1

2
× 1 + f

(
1

2
, 2

)
× 1

2
× 1

+ f(1, 2)× 1

2
× 1 + f

(
1

2
, 3

)
× 1

2
× 1 + f(1, 3)× 1

2
× 1
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=
5

8
+ 1 +

17

8
+

5

2
+

37

8
+ 5

=
127

8
= 15.875.

We will see below that the continuity of f implies that f is integrable on D, so we may
conclude that

5.375 ≤
∫ ∫

(x2 + y2)dxdy ≤ 15.875.

Example Suppose k is a constant and f(x, y) = k for all (x, y) in the rectangle D =
[a, b]× [c, d]. The for any partitions P = {x0, x1, . . . , xm} of [a, b] and Q = {y0, y1, . . . , yn}
of [c, d], mij = k =Mij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Hence

L(f, P ×Q) = U(f, P ×Q)

=
m∑

i=1

n∑

j=1

k∆xi∆yj

= k

m∑

i=1

n∑

j=1

∆xi∆yj

= k × (area of D)

= k(b− a)(d− c).

Hence f is integrable and
∫ ∫

D

f(x, y)dxdy =

∫ ∫

D

kdxdy = k(b− a)(d− c).

Of course, geometrically this result is saying that the volume of a box with height k and
base D is k times the area of D. In particular, if k = 1 we see that

∫ ∫

D

dxdy = area of D.

Example If D = [1, 2]× [−1, 3], then

∫

D

5dxdy = 5(2− 1)(3 + 1) = 20.

The properties of the definite integral stated in the following proposition follow easily
from the definition, although we will omit the somewhat technical details.

Proposition Suppose f : R2 → R and g : R2 → R are both integrable on the rectangle
D = [a, b]× [c, d] and k is a scalar constant. Then

∫ ∫

D

(f(x, y) + g(x, y))dxdy =

∫ ∫

D

f(x, y)dxdy +

∫ ∫

D

g(x, y)dxdy, (3.6.11)
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∫ ∫

D

kf(x, y)dxdy = k

∫ ∫

D

f(x, y)dxdy, (3.6.12)

and, if f(x, y) ≤ g(x, y) for all (x, y) in D,

∫ ∫

D

f(x, y)dxdy ≤
∫ ∫

D

g(x, y)dxdy. (3.6.13)

Our definition does not provide a practical method for determining whether a given
function is integrable or not. A complete characterization of integrability is beyond the
scope of this text, but we shall find one simple condition very useful: if f is continuous
on an open set containing the rectangle D, then f is integrable on D. Although we will
not attempt a full proof of this result, the outline is as follows. If f is continuous on
D = [a, b] × [c, d] and we are given any ε > 0, then it is possible to find partitions P of
[a, b] and Q of [c, d] sufficiently fine to guarantee that if (x, y) and (u, v) are points in the
same rectangle Dij of the partition P ×Q of D, then

|f(x, y)− f(u, v)| < ε

(b− a)(d− c)
. (3.6.14)

(Note that this is not a direct consequence of the continuity of f , but follows from a
slightly deeper property of continuous functions on closed bounded sets known as uniform
continuity.) It follows that if mij is the minimum value and Mij is the maximum value of
f on Dij , then

U(f, P ×Q)− L(f, P ×Q) =

m∑

i=1

n∑

j=1

Mij∆xi∆yj −
m∑

i=1

n∑

j=1

mij∆xi∆yj

=
m∑

i=1

n∑

j=1

(Mij −mij)∆xi∆yj

<
m∑

i=1

n∑

j=1

ε

(b− a)(d− c)
∆xi∆yj

=
ε

(b− a)(d− c)

m∑

i=1

n∑

j=1

∆xi∆yj

=
ε

(b− a)(d− c)
(b− a)(d− c)

= ε.

(3.6.15)

It now follows that we may find upper and lower sums which are arbitrarily close, from
which follows the integrability of f .

Theorem If f is continuous on an open set containing the rectangle D, then f is inte-
grable on D.
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Figure 3.6.4 A slice of the region beneath f(x, y) = x2 + y2 with area α(2)

Example If f(x, y) = x2 + y2, then f is continuous on all of R2. Hence f is integrable
on D = [0, 1]× [0, 3].

Iterated integrals

Now suppose we have a rectangle D = [a, b]× [c, d] and a continuous function f : R2 → R
such that f(x, y) ≥ 0 for all (x, y) in D. Let

B = {(x, y, z) : (x, y) ∈ D, 0 ≤ z ≤ f(x, y)}. (3.6.16)

Then B is the region in R3 bounded below by D and above by the graph of f . If we let V
be the volume of B, then

V =

∫ ∫

D

f(x, y)dxdy. (3.6.17)

However, there is another approach to finding V . If, for every c ≤ y ≤ d, we let

α(y) =

∫ b

a

f(x, y)dx, (3.6.18)

then α(y) is the area of a slice of B cut by a plane orthogonal to both the xy-plane and
the yz-plane and passing through the point (0, y, 0) on the y-axis (see Figure 3.6.4 for an
example). If we let the partition Q = {y0, y1, . . . , yn} divide [c, d] into n intervals of equal
length ∆y, then we may approximate V by

n∑

j=1

α(yi)∆y. (3.6.19)
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That is, we may approximate V by slicing B into slabs of thickness ∆y perpendicular to the
yz-plane, and then summing approximations to the volume of each slab. As n increases,
this approximation should converge to V ; at the same time, since (3.6.19) is a right-hand
rule approximation to the definite integral of α over [c, d], the sum should converge to

∫ d

c

α(y)dy

as n increases. That is, we should have

V = lim
n→∞

n∑

j=1

α(yi)∆y =

∫ d

c

α(y)dy =

∫ d

c

(∫ b

a

f(x, y)dx

)
dy. (3.6.20)

Note that the expression on the right-hand side of (3.6.20) is not the definite integral of f
over D, but rather two successive integrals of one variable. Also, we could have reversed
our order and first integrated with respect to y and then integrated the result with respect
to x.

Definition Suppose f : R2 → R is defined on a rectangle D = [a, b]× [c, d]. The iterated
integrals of f over D are

∫ d

c

∫ b

a

f(x, y)dxdy =

∫ d

c

(∫ b

a

f(x, y)dx

)
dy (3.6.21)

and
∫ b

a

∫ d

c

f(x, y)dydx =

∫ b

a

(∫ d

c

f(x, y)dy

)
dx. (3.6.22)

In the situation of the preceding paragraph, we should expect the iterated integrals in
(3.6.21) and (3.6.22) to be equal since they should both equal V , the volume of the region
B. Moreover, since we also know that

V =

∫ ∫

D

f(x, y)dxdy,

the iterated integrals should both be equal to the definite integral of f over D. These
statements may in fact be verified as long as f is integrable on D and the iterated integrals
exist. In this case, iterated integrals provide a method of evaluating double integrals in
terms of integrals of a single variable (for which we may use the Fundamental Theorem of
Calculus).
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Figure 3.6.5 Region beneath f(x, y) = x2 + y2 over the rectangle [0, 1]× [0, 3]

Fubini’s Theorem (for rectangles) Suppose f is integrable over the rectangle D =
[a, b]× [c, d]. If ∫ d

c

∫ b

a

f(x, y)dxdy

exists, then ∫ ∫

D

f(x, y)dxdy =

∫ d

c

∫ b

a

f(x, y)dxdy. (3.6.23)

If ∫ b

a

∫ d

c

f(x, y)dydx

exists, then ∫ ∫

D

f(x, y)dxdy =

∫ b

a

∫ d

c

f(x, y)dxdy. (3.6.24)

Example To find the volume V of the region beneath the graph of f(x, y) = x2 + y2

and over the rectangle D = [0, 1]× [0, 3] (as shown in Figure 3.6.5), we compute

V =

∫ ∫

D

(x2 + y2)dxdy

=

∫ 3

0

∫ 1

0

(x2 + y2)dxdy
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=

∫ 3

0

(
x3

3
+ xy2

) ∣∣∣∣
1

0

dy

=

∫ 3

0

(
1

3
+ y2

)
dy

=

(
y

3
+
y3

3

) ∣∣∣∣
3

0

= 1 + 9

= 10.

We could also compute the iterated integral in the other order:

V =

∫ ∫

D

(x2 + y2)dxdy

=

∫ 1

0

∫ 3

0

(x2 + y2)dydx

=

∫ 1

0

(
x2y +

y3

3

) ∣∣∣∣
3

0

dx

=

∫ 1

0

(3x2 + 9)dx

= (x3 + 9y)
∣∣1
0

= 1 + 9

= 10.

Example If D = [1, 2]× [0, 1], then

∫ ∫

D

x2ydxdy =

∫ 2

1

∫ 1

0

x2ydydx =

∫ 2

1

x2y2

2

∣∣∣∣
1

0

dx =

∫ 2

1

x2

2
dx =

x3

6

∣∣∣∣
2

1

=
8

6
− 1

6
=

7

6
.

Definite integrals on other regions

Integrals over intervals suffice for most applications of functions of a single variable. How-
ever, for functions of two variables it is important to consider integrals on regions other
than rectangles. To extend our definition, consider a function f : R2 → R defined on a
bounded region D. Let D∗ be a rectangle containing D and, for any (x, y) in D∗, define

f∗(x, y) =

{
f(x, y), if (x, y) ∈ D,
0, if (x, y) /∈ D.

(3.6.25)

In other words, f∗ is identical to f on D and 0 at all points of D∗ outside of D. Now if
f∗ is integrable on D∗, and since the the region where f∗ is 0 should contribute nothing
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Figure 3.6.6 Regions of Type I and Type II

to the value of the integral, it is reasonable to define the integral of f over D to be equal
to the integral of f∗ over D∗.

Definition Suppose f is defined on a bounded regionD of R2 and letD∗ be any rectangle
containing D. Define f∗ as in (3.6.25). We say f is integrable on D if f∗ is integrable on
D∗, in which case we define

∫ ∫

D

f(x, y)dxdy =

∫ ∫

D∗
f∗(x, y)dxdy. (3.6.26)

Note that the integrability of f on a region D depends not only on the nature of f , but
on the region D as well. In particular, even if f is continuous on an open set containing D,
it may still turn out that f is not integrable on D because of the complicated nature of the
boundary of D. Fortunately, there are two basic types of regions which occur frequently
and to which our previous theorems generalize.

Definition We say a region D in R2 is of Type I if there exist real numbers a < b and
continuous functions α : R → R and β : R → R such that α(x) ≤ β(x) for all x in [a, b]
and

D = {(x, y) : a ≤ x ≤ b, α(x) ≤ y ≤ β(x)}. (3.6.27)

We say a region D in R2 is of Type II if there exist real numbers c < d and continuous
functions γ : R → R and δ : R → R such that γ(y) ≤ δ(y) for all y in [c, d] and

D = {(x, y) : c ≤ y ≤ d, γ(y) ≤ x ≤ δ(y)}. (3.6.28)

Figure 3.6.6 shows typical examples of regions of Type I and Type II.

Example If D is the triangle with vertices at (0, 0), (1, 0), and (1, 1), then

D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}.
Hence D is a Type I region with α(x) = 0 and β(x) = x. Note that we also have

D = {(x, y) : 0 ≤ y ≤ 1, y ≤ x ≤ 1},
so D is also a Type II region with γ(y) = y and δ(y) = 1. See Figure 3.6.7.
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Figure 3.6.7 Two regions which are of both Type I and Type II

Example The closed disk

D = {(x, y) : x2 + y2 ≤ 1}

is both a region of Type I, with

D = {(x, y) : −1 ≤ x ≤ 1,−
√
1− x2 ≤ y ≤

√
1− x2},

and a region of Type II, with

D = {(x, y) : −1 ≤ y ≤ 1,−
√
1− y2 ≤ x ≤

√
1− x2}.

See Figure 3.6.7.

Example Let D be the region which lies beneath the graph of y = x2 and above the
interval [−1, 1] on the x-axis. Then

D = {(x, y) : −1 ≤ x ≤ 1, 0 ≤ y ≤ x2},

so D is a region of Type I. However, D is not a region of Type II. See Figure 3.6.8.

Theorem If D is a region of Type I or a region of Type II and f : R2 → R is continuous
on an open set containing D, then f is integrable on D.

Fubini’s Theorem (for regions of Type I and Type II) Suppose f : R2 → R is
integrable on the region D. If D is a region of Type I with

D = {(x, y) : a ≤ x ≤ b, α(x) ≤ y ≤ β(x)}

and the iterated integral ∫ b

a

∫ β(x)

α(x)

f(x, y)dydx
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Figure 3.6.8 A region which is of Type I but not of Type II

exists, then ∫ ∫

D

f(x, y)dxdy =

∫ b

a

∫ β(x)

α(x)

f(x, y)dydx. (3.6.29)

If D is a region of Type II with

D = {(x, y) : c ≤ y ≤ d, γ(y) ≤ x ≤ δ(y)}

and the iterated integral ∫ d

c

∫ δ(y)

γ(y)

f(x, y)dxdy

exists, then ∫ ∫

D

f(x, y)dxdy =

∫ d

c

∫ δ(y)

γ(y)

f(x, y)dydx. (3.6.30)

Example LetD be the triangle with vertices at (0, 0), (1, 0), and (1, 1), as in the example
above. Expressing D as a region of Type I, we have

∫ ∫

D

xydxdy =

∫ 1

0

∫ x

0

xydydx =

∫ 1

0

xy2

2

∣∣∣∣
x

0

dx =

∫ 1

0

x3

2
dx =

x4

8

∣∣∣∣
1

0

=
1

8
.

Since D is also a region of Type II, we may evaluate the integral in the other order as well,
obtaining

∫ ∫

D

xydxdy =

∫ 1

0

∫ 1

y

xydxdy =

∫ 1

0

x2y

2

∣∣∣∣
1

y

dy =

∫ 1

0

(
y

2
− y3

2

)
dy =

(
y2

4
− y4

8

) ∣∣∣∣
1

0

=
1

8
.
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Figure 3.6.9 The region D = {(x, y) : 0 ≤ x ≤ 1,
√
x ≤ y ≤ 1}

In the last example the choice of integration was not too important, with the first order
being perhaps slightly easier than the second. However, there are times when the choice
of the order of integration has a significant effect on the ease of integration.

Example Let D = {(x, y) : 0 ≤ x ≤ 1,
√
x ≤ y ≤ 1} (see Figure 3.6.9). Since D is both

of Type I and of Type II, we may evaluate
∫ ∫

D

e−y3

dxdy

either as ∫ 1

0

∫ 1

√
x

e−y3

dydx

or as ∫ 1

0

∫ y2

0

e−y3

dxdy.

The first of these two iterated integrals requires integrating g(y) = e−y3

; however, we may
evaluate the second easily:

∫ ∫

D

e−y3

dxdy =

∫ 1

0

∫ y2

0

e−y3

dxdy

=

∫ 1

0

xe−y3
∣∣∣
y2

0
dy

=

∫ 1

0

y2e−y3

dy

= −1

3
e−y3

∣∣∣∣
1

0

=
1

3
(1− e−1).
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0
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Figure 3.6.10 Region bounded by z = 4− x2 − y2 and the xy-plane

Example Let V be the volume of the region lying below the paraboloid P with equation
z = 4− x2 − y2 and above the xy-plane (see Figure 3.6.10). Since the surface P intersects
the xy-plane when

4− x2 − y2 = 0,

that is, when
x2 + y2 = 4,

V is the volume of the region bounded above by the graph of f(x, y) = 4 − x2 − y2 and
below by the region

D = {(x, y) : x2 + y2 ≤ 4}.
If we describe D as a Type I region, namely,

D = {(x, y) : −2 ≤ x ≤ 2,−
√
4− x2 ≤ y ≤

√
4− x2},

then we may compute

V =

∫ ∫

D

(4− x2 − y2)dxdy

=

∫ 2

−2

∫ √
4−x2

−
√
4−x2

(4− x2 − y2)dydx

=

∫ 2

−2

(
4y − x2y − y3

3

) ∣∣∣∣

√
4−x2

−
√
4−x2

dx
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=

∫ 2

−2

(
8
√
4− x2 − 2x2

√
4− x2 − 2

3
(4− x2)

3
2

)
dx

= 2

∫ 2

−2

(
(4− x2)

√
4− x2 − 1

3
(4− x2)

3
2

)
dx

=
4

3

∫ 2

−2

(4− x2)
3
2 dx.

Using the substitution x = 2 sin(θ), we have dx = 2 cos(θ)dθ, and so

V =
4

3

∫ 2

−2

(4− x2)
3
2 dx

=
4

3

∫ π
2

−π
2

(4− 4 sin2(θ))
3
2 2 cos(θ)dθ

=
64

3

∫ π
2

−π
2

cos4(θ)dθ

=
64

3

∫ π
2

−π
2

(
1 + cos(2θ)

2

)2

dθ

=
16

3

∫ π
2

−π
2

(1 + 2 cos(2θ) + cos2(2θ))dθ

=
16

3

(
θ
∣∣π2
−π

2

+ sin(2θ)
∣∣π2
−π

2

+

∫ π
2

−π
2

1 + cos(4θ)

2
dθ

)

=
16

3

(
π +

θ

2

∣∣∣∣
π
2

−π
2

+
1

8
sin(4θ)

∣∣∣∣
π
2

−π
2

)

=
16

3

(
π +

π

2

)

= 8π.

Integrals of functions of three or more variables

We will now sketch how to extend the definition of the definite integral to higher dimen-
sions. Suppose f : Rn → R is bounded on an n-dimensional closed rectangle

D = [a1, b1]× [a2, b2]× · · · [an, bn].

Let P1, P2, . . . , Pn partition the intervals [a1, b1], [a2, b2], . . . , [an, bn] into m1, m2, . . . ,
mn, respectively, intervals, and let P1×P2×· · ·×Pn represent the corresponding partition
of D into m1m2 · · ·mn n-dimensional closed rectangles Di1i2···in . If mi1i2···in is the largest
real number such that mi1i2···in ≤ f(x) for all x in Di1i2···in and Mi1i2···in is the smallest
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real number such that f(x) ≤Mi1i2···in for all x in Di1i2···in , then we may define the lower
sum

L(f, P1 × P2 × · · · × Pn) =

m1∑

i1=1

m2∑

i2

· · ·
mn∑

in=1

mi1i2···in∆x1i1∆x2i2 · · ·∆xnin (3.6.31)

and the upper sum

U(f, P1 × P2 × · · · × Pn) =

m1∑

i1=1

m2∑

i2

· · ·
mn∑

in=1

Mi1i2···in∆x1i1∆x2i2 · · ·∆xnin , (3.6.32)

where ∆xjk is the length of the kth interval of the partition Pj . We then say f is integrable
on D if there exists a unique real number I with the property that

L(f, P1 × P2 × · · · × Pn) ≤ I ≤ U(f, P1 × P2 × · · · × Pn) (3.6.33)

for all choices of partitions P1, P2, . . . , Pn and we write

I =

∫
· · ·
∫ ∫

D

f(x1, x2, . . . , xn)dx1dx2 · · · dxn, (3.6.34)

or

I =

∫
· · ·
∫ ∫

D

f(x)dx, (3.6.35)

for the definite integral of f on D.
We may now generalize the definition of the integral to more general regions in the

same manner as above. Moreover, our integrability theorem and Fubini’s theorem, with
appropriate changes, hold as well. When n = 3, we may interpret

∫ ∫ ∫

D

f(x, y, z)dxdydz (3.6.36)

to be the total mass of D if f(x, y, z) represents the density of mass at (x, y, z), or the
total electric charge of D if f(x, y, z) represents the electric charge density at (x, y, z). For
any value of n we may interpret

∫
· · ·
∫ ∫

D

dx1dx2 · · · dxn (3.6.37)

to be the n-dimensional volume of D. We will not go into further details, preferring to
illustrate with examples.

Example Suppose D is the closed rectangle

D = {(x, y, z, t) : 0 ≤ x ≤ 1,−1 ≤ y ≤ 1,−2 ≤ z ≤ 2, 0 ≤ t ≤ 2}
= [0, 1]× [−1, 1]× [−2, 2]× [0, 2].
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Then

∫ ∫ ∫ ∫

D

(x2 + y2 + z2 − t2)dxdydzdt =

∫ 1

0

∫ 1

−1

∫ 2

−2

∫ 2

0

(x2 + y2 + z2 − t2)dtdzdydx

=

∫ 1

0

∫ 1

−1

∫ 2

−2

(
x2t+ y2t+ z2t− t3

3

) ∣∣∣∣
2

0

dzdydx

=

∫ 1

0

∫ 1

−1

∫ 2

−2

(
2x2 + 2y2 + 2z2 − 8

3

)
dzdxdy

=

∫ 1

0

∫ 1

−1

(
2x2z + 2y2z +

2z3

3
− 8z

3

) ∣∣∣∣
2

−2

dydx

=

∫ 1

0

∫ 1

−1

(
8x2 + 8y2 +

32

3
− 32

3

)
dydx

=

∫ 1

0

(
8x2y +

8y2

3

) ∣∣∣∣
1

−1

dx

=

∫ 1

0

(
16x2 +

16

3

)
dx

=

(
16x3

3
+

16x

3

) ∣∣∣∣
1

0

=
32

3
.

Example Let D be the region in R3 bounded by the the three coordinate planes and
the plane P with equation z = 1− x− y (see Figure 3.6.11). Suppose we wish to evaluate

∫ ∫ ∫

D

xyzdxdydz.

Note that the side of D which lies in the xy-plane, that is, the plane z = 0, is a triangle
with vertices at (0, 0, 0), (1, 0, 0), and (0, 1, 0). Or, strictly in terms of x and y coordinates,
we may describe this face as the triangle in the first quadrant bounded by the line y = 1−x
(see Figure 3.6.11). Hence x varies from 0 to 1, and, for each value of x, y varies from 0
to 1− x. Finally, once we have fixed a values for x and y, z varies from 0 up to P , that is,
to 1− x− y. Hence we have

∫ ∫ ∫

D

xyzdxdydz =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

xyzdzdydx

=

∫ 1

0

∫ 1−x

0

xyz2

2

∣∣∣∣
1−x−y

0

dydx

=

∫ 1

0

∫ 1−x

0

xy(1− x− y)2

2
dydx
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y = 1 − x
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y

y

Figure 3.6.11 Region bounded by the coordinate planes and the plane z = 1− x− y

=
1

2

∫ 1

0

∫ 1−x

0

(xy − 2x2y + x3y + 2x2y2 + xy3)dydx

=
1

2

∫ 1

0

(
xy2

2
− 2x2y2 +

x3y2

2
+

2x2y3

3
+
xy4

4

) ∣∣∣∣
1−x

0

dx

=
1

2

∫ 1

0

(
3x

4
− 10x2

3
+

9x3

2
− 2x4 +

x5

12

)
dx

=
1

2

∫ 1

0

(
3x2

8
− 10x3

9
+

9x4

8
− 2x5

5
+
x6

72

) ∣∣∣∣
1

0

=
1

2

(
3

8
− 10

9
+

9

8
− 2

5
+

1

72

)

=
1

720
.

Example Let V be the volume of the region D in R3 bounded by the paraboloids with
equations z = 10 − x2 − y2 and z = x2 + y2 − 8 (see Figure 3.6.12). We will find V by
evaluating

V =

∫ ∫ ∫

D

dxdydz.

To set up an iterated integral, we first note that the paraboloid z = 10 − x2 − y2 opens
downward about the z-axis and the paraboloid z = x2 + y2 − 8 opens upward about the z
axis. The two paraboloids intersect when

10− x2 − y2 = x2 + y2 − 8,
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Figure 3.6.12 Region bounded by z = 10− x2 − y2 and z = x2 + y2 − 8

that is, when

x2 + y2 = 9.

Now we may describe the region in the xy-plane described by x2 + y2 ≤ 9 as the set of
points (x, y) for which −3 ≤ x ≤ 3 and, for every such fixed x,

−
√
3− x2 ≤ y ≤

√
3− x2.

Moreover, once we have fixed x and y so that (x, y) is inside the circle x2 + y2 = 9, then
(x, y, z) is in D provided x2 + y2 − 8 ≤ z ≤ 10− x2 − y2. Hence we have
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V =

∫ ∫ ∫

D

dxdydz

=

∫ 3

−3

∫ √
9−x2

−
√
9−x2

∫ 10−x2−y2

x2+y2−8

dzdydx

=

∫ 3

−3

∫ √
9−x2

−
√
9−x2

z
∣∣10−x2−y2

x2+y2−8
dydx

=

∫ 3

−3

∫ √
9−x2

−
√
9−x2

(18− 2x2 − 2y2)dydx

=

∫ 3

−3

(
18y − 2x2y − 2y3

3

) ∣∣∣∣

√
9−x2

−
√
9−x2

dx

=

∫ 3

−3

(
36
√
9− x2 − 4x2

√
9− x2 − 4

3
(9− x2)

3
2

)
dx

=

∫ 3

−3

√
9− x2

(
36− 4x2 − 4

3
(9− x2)

)
dx

=
8

3

∫ 3

−3

(9− x2)
3
2 dx.

Using the substitution x = 3 sin(θ), we have dx = 3 cos(θ)dθ, and so

V =
8

3

∫ 3

−3

(9− x2)
3
2 dx

=
8

3

∫ π
2

−π
2

(9− 9 sin2(x))
3
2 (3 cos(θ))dθ

= 216

∫ π
2

−π
2

cos4(θ)dθ

= 216

∫ π
2

−π
2

(
1 + cos(2θ)

2

)2

dθ

= 54

∫ π
2

−π
2

(1 + 2 cos(2θ) + cos2(2θ))dθ

= 54

(
θ
∣∣π2
−π

2

+ sin(2θ)
∣∣π2
−π

2

+

∫ π
2

−π
2

1 + cos(4θ)

2
dθ

)

= 54π + 27θ
∣∣π2
−π

2

+
27

4
sin(4θ)

∣∣π2
−π

2

= 81π.
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Problems

1. Evaluate each of the following iterated integrals.

(a)

∫ 3

1

∫ 2

0

3xy2dydx (b)

∫ π
2

0

∫ π

0

4x sin(x+ y)dydx

(c)

∫ 2

−2

∫ 1

−1

(4− x2y2)dxdy (d)

∫ 2

0

∫ 1

0

ex+ydxdy

2. Evaluate the following definite integrals over the given rectangles.

(a)

∫ ∫

D

(y2 − 2xy)dxdy, D = [0, 2]× [0, 1] (b)

∫ ∫

D

1

(x+ y)2
dxdy, D = [1, 2]× [1, 3]

(c)

∫ ∫

D

ye−xdxdy, D = [0, 1]× [0, 2] (d)

∫ ∫

D

1

2x+ y
dxdy, D = [1, 2]× [0, 1]

3. For each of the following, evaluate the iterated integrals and sketch the region of
integration.

(a)

∫ 2

0

∫ y

0

(xy2 − x2)dxdy (b)

∫ 1

0

∫ x2

x4

(x2 + y2)dydx

(c)

∫ 2

0

∫ √
4−x2

0

(4− x2 − y2)dydx (d)

∫ 1

0

∫ y2

0

xye−x−ydxdy

4. Find the volume of the region beneath the graph of f(x, y) = 2 + x2 + y2 and above
the rectangle D = [−1, 1]× [−2, 2].

5. Find the volume of the region beneath the graph of f(x, y) = 4 − x2 + y2 and above
the region D = {(x, y) : 0 ≤ x ≤ 2,−x ≤ y ≤ x}. Sketch the region D.

6. Evaluate

∫ ∫

D

xydxdy, where D is the region bounded by the x-axis, the y-axis, and

the line y = 2− x.

7. Evaluate

∫ ∫

D

e−x2

dxdy where D = {(x, y) : 0 ≤ y ≤ 1, y ≤ x ≤ 1}.

8. Find the volume of the region in R3 described by x ≥ 0, y ≥ 0, and 0 ≤ z ≤ 4−2y−4x.

9. Find the volume of the region in R3 lying above the xy-plane and below the surface
with equation z = 16− x2 − y2.

10. Find the volume of the region in R3 lying above the xy-plane and below the surface
with equation z = 4− 2x2 − y2.

11. Evaluate each of the following iterated integrals.

(a)

∫ 2

1

∫ 3

0

∫ 2

−2

(4− x2 − z2)dydxdz (b)

∫ 3

−2

∫ 2

−1

∫ 2

0

3xyzdxdydz

(c)

∫ 4

0

∫ x

0

∫ x+y

0

(x2 − yz)dzdydx (d)

∫ 1

0

∫ x

0

∫ x+y

0

∫ x+y+z

0

wdwdzdydx
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12. Find the volume of the region in R3 bounded by the paraboloids with equations z =
3− x2 − y2 and z = x2 + y2 − 5.

13. Evaluate

∫ ∫ ∫

D

xydxdydz, where D is the region bounded by the xy-plane, the yz-

plane, the xz-plane, and the plane with equation z = 4− x− y.

14. If f(x, y, z) represents the density of mass at the point (x, y, z) of an object occupying
a region D in R3, then ∫ ∫ ∫

D

f(x, y, z)dxdydz

is the total mass of the object and the point (x̄, ȳ, z̄), where

x̄ =
1

m

∫ ∫ ∫

D

xf(x, y, z)dxdydz,

ȳ =
1

m

∫ ∫ ∫

D

yf(x, y, z)dxdydz,

and

z̄ =
1

m

∫ ∫ ∫

D

zf(x, y, z)dxdydz,

is called the center of mass of the object. Suppose D is the region bounded by the
planes x = 0, y = 0, z = 0, and z = 4− x− 2y.

(a) Find the total mass and center of mass for an object occupying the region D with
mass density given by f(x, y, z) = 1.

(b) Find the total mass and center of mass for an object occupying the region D with
mass density given by f(x, y, z) = z.

15. If X and Y are points chosen at random from the interval [0, 1], then the probability

that (X,Y ) lies in a subset D of the unit square [0, 1]× [0, 1] is

∫ ∫

D

dxdy.

(a) Find the probability that X ≤ Y .

(b) Find the probability that X + Y ≤ 1.

(c) Find the probability that XY ≥ 1

2
.

16. IfX, Y , and Z are points chosen at random from the interval [0, 1], then the probability

that (X,Y, Z) lies in a subset D of the unit cube [0, 1]× [0, 1]× [0, 1] is

∫ ∫ ∫

D

dxdydz.

(a) Find the probability that X ≤ Y ≤ Z.

(b) Find the probability that X + Y + Z ≤ 1.
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Change of Variables in Integrals

One of the basic techniques for evaluating an integral in one-variable calculus is substitu-
tion, replacing one variable with another in such a way that the resulting integral is of a
simpler form. Although slightly more subtle in the case of two or more variables, a similar
idea provides a powerful technique for evaluating definite integrals.

Linear change of variables

We will present the main idea through an example. Let

D = {(x, y) : 9x2 + 4y2 ≤ 36},

the region inside the ellipse which intersects the x-axis at (−2, 0) and (2, 0) and the y-axis
at (0,−3) and (0, 3). To find the area of D, we evaluate

∫ ∫

D

dxdy =

∫ 2

−2

∫ 3
2

√
4−x2

− 3
2

√
4−x2

dydx =

∫ 2

−2

3
√
4− x2 dx = 6π,

where the final integral may be evaluated using the substitution x = 2 sin(θ) or by noting
that ∫ 2

−2

√
4− x2 dx

is one-half of the area of a circle of radius 2. Alternatively, suppose we write the equation
of the ellipse as

x2

4
+
y2

9
= 1

and make the substitution x = 2u and y = 3v. Then u = x
2 and v = y

3 , so if (x, y) is a
point in D, then

u2 + v2 =
x2

4
+
y2

9
≤ 1.

That is, if (x, y) is a point in D, then (u, v) is a point in the unit disk

E = {(u, v) : u2 + v2 ≤ 1}.

Conversely, if (u, v) is a point in E, then

x2

4
+
y2

9
=

4u2

4
+

9v2

9
= u2 + v2 ≤ 1,

1 Copyright c© by Dan Sloughter 2001
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Figure 3.7.1 F maps E onto D

so (x, y) is a point in D. Thus the function F (u, v) = (2u, 3v) takes the region E, a
closed disk of radius 1, and stretches it onto the region D (as shown in Figure 3.7.1).
However, note that even though every point in E corresponds to exactly one point in D,
and, conversely, every point in D corresponds to exactly on point in E, nevertheless E and
D do not have the same area. To see how F changes area, consider what it does to the
unit square S with sides e1 = (1, 0) and e2 = (0, 1). The area of S is 1, but F maps S
onto a rectangle R with sides

F (1, 0) = (2, 0)

and
F (0, 1) = (0, 3)

and area 6. This a special case of a general fact we saw in Section 1.6: the linear function
F , with associated matrix

M =

[
2 0
0 3

]
,

maps the unit square S onto a parallelogram R with area

|det(M)| = 6.

The important fact for us here is that 1 unit of area in the uv-plane corresponds to 6 units
of area in the xy-plane. Hence the area of D will be 6 times the area of E. That is,

∫ ∫

D

dxdy =

∫ ∫

E

|det(M)|dudv =

∫ ∫

E

6dudv = 6

∫ ∫

E

dudv = 6π,

where the final integral is simply the area inside a circle of radius 1.
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Figure 3.7.2 The ellipsoid x2

4 + y2

16 + z2

9 = 1

These ideas provide the background for a proof of the following theorem.

Theorem Suppose f : Rn → R is continuous on a an open set U containing the closed
bounded set D. Suppose F : Rn → Rn is a linear function, M is an n×n matrix such that
F (u) = Mu, and det(M) 6= 0. If F maps the region E onto the region D and we define
the change of variables 



x1
x2
...
xn


 =M




u1
u2
...
un


 ,

then∫ ∫
· · ·
∫

D

f(x1,x2, . . . , xn)dx1dx2 · · · dxn

=

∫ ∫
· · ·
∫

E

f(F (u1, u2, . . . , un))|det(M)|du1du2 · · · dun.
(3.7.1)

Example Let D be the region in R3 bounded by the ellipsoid with equation

x2

4
+
y2

16
+
z2

9
= 1.

See Figure 3.7.2. If we make the change of variables x = 2u, y = 4v, and z = 3w, that is,


x
y
z


 =



2 0 0
0 4 0
0 0 3





u
v
w


 ,
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then, for any (x, y, z) in D, we have

u2 + v2 + w2 =
x2

4
+
y2

16
+
z2

9
≤ 1.

That is, if (x, y, z) lies in D, then the corresponding (u, v, w) lies in the closed unit ball
E = B̄3((0, 0, 0), 1). Conversely, if (u, v, w) lies in E, then

x2

4
+
y2

16
+
z2

9
=

4u2

4
+

16v2

16
+

9w2

9
= u2 + v2 + w2 ≤ 1,

so (x, y, z) lies in D. Hence, the change of variables F (u, v, w) = (2u, 4v, 3w) maps E onto
D. Now

det



2 0 0
0 4 0
0 0 3


 = 24,

so if V is the volume of D, then

V =

∫ ∫ ∫

D

dxdydz =

∫ ∫ ∫

E

24dudvdw = 24

∫ ∫ ∫

E

dudvdw = 24

(
4π

3

)
= 32π,

where we have used the fact that the volume of a sphere of radius 1 is 4π
3 to evaluate the

final integral.

Nonlinear change of variables

Without going into the technical details, we will indicate how to proceed when the change
of variables is not linear. Suppose f : Rn → R is continuous on a an open set U containing
the closed bounded set D and F : Rn → Rn maps a closed bounded region E of Rn

onto D so that every point of D corresponds to exactly one point of E. Writing F (u) =
(F1(u), F2(u), . . . , Fn(u)), we will assume that F1, F2, . . . , and Fn are all differentiable
on an open set W containing E. Although we will not study this type of function until
Chapter 4, the natural candidate for the derivative of F is the matrix whose ith row is
∇Fi(u). Letting xi = Fi(u1, u2, . . . , un), i = 1, 2, . . . , n, we denote this matrix, called the
Jacobian matrix of F ,

∂(x1, x2, . . . , xn)

∂(u1, u2, . . . , un)
. (3.7.2)

Explicitly,

∂(x1, x2, . . . , xn)

∂(u1, u2, . . . , un)
=




∂

∂u1
F1(u)

∂

∂u2
F1(u) · · · ∂

∂un
F1(u)

∂

∂u1
F2(u)

∂

∂u2
F2(u) · · · ∂

∂un
F2(u)

...
...

. . .
...

∂

∂u1
Fn(u)

∂

∂u2
Fn(u) · · · ∂

∂un
Fn(u)



. (3.7.3)



Section 3.7 Change of Variables in Integrals 5

θ

y

x

r

P

Figure 3.7.3 Polar and Cartesian coordinates for a point P

We shall see in Chapter 4 that
∂(x1, x2, . . . , xn)

∂(u1, u2, . . . , un)

is the matrix for the linear part of the best affine approximation to F at (u1, u2, . . . , un).
Hence, for sufficiently small rectangles, the factor by which F changes the area of a rect-
angle when it maps it to a region will be approximately

∣∣∣∣det
∂(x1, x2, . . . , xn)

∂(u1, u2, . . . , un)

∣∣∣∣ . (3.7.4)

One may then show that, analogous to (3.7.1), we have
∫

· · ·
∫ ∫

D

f(x1, x2, . . . , xn)dx1dx2 · · · dxn

=

∫
· · ·
∫ ∫

E

f(F (u1, u2, . . . , un))

∣∣∣∣det
∂(x1, x2, . . . , xn)

∂(u1, u2, . . . , un)

∣∣∣∣ dx1dx2 · · · dxn.
(3.7.5)

Note that (3.7.5) is just (3.7.1) with the matrix M replaced by the Jacobian of F .
We will now look at two very useful special cases of the preceding result. See Problems

22 and 23 for a third special case.

Polar coordinates

As an alternative to describing the location of a point P in the plane using its Cartesian
coordinates (x, y), we may locate the point using r, the distance from P to the origin, and
θ, the angle between the vector from (0, 0) to P and the positive x-axis, measured in the
counterclockwise direction from 0 to 2π (see Figure 3.7.3). That is, if P has Cartesian
coordinates (x, y), with x 6= 0, we may define its polar coordinates (r, θ) by specifying that

r =
√
x2 + y2 (3.7.6)
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and
tan(θ) =

y

x
, (3.7.7)

where we take 0 ≤ θ ≤ π if y ≥ 0 and π < θ < 2π if y < 0. If x = 0, we let θ = π
2 if

y > 0 and θ = 3π
2 if y < 0. For (x, y) = (0, 0), r = 0 and θ could have any value, and so is

undefined. Conversely, if a point P has polar coordinates (r, θ), then

x = r cos(θ) (3.7.8)

and
y = r sin(θ). (3.7.9)

Note that the choice of the interval [0, 2π) for the values of θ is not unique, with any
interval of length 2π working as well. Although [0, 2π) is the most common choice for
values of θ, it is sometimes useful to use (−π, π) instead.
Example If a point P has Cartesian coordinates (−1, 1), then its polar coordinates are(√

2, 3π4
)
.

Example A point with polar coordinates
(
3, π6

)
has Cartesian coordinates

(
3
√
3

2 , 32

)
.

In our current context, we want to think of the polar coordinate mapping

(x, y) = F (r, θ) = (r cos(θ), r sin(θ)) (3.7.10)

as a change of variables between the rθ-plane and the xy-plane. This mapping is particu-
larly useful for us because it maps rectangular regions in the rθ-plane onto circular regions
in the xy-plane. For example, for any a > 0, F maps the rectangular region

E = {(r, θ) : 0 ≤ r ≤ a, 0 ≤ θ < 2π}

in the rθ-plane onto the closed disk

D = B̄2((0, 0), a) = {(x, y) : x2 + y2 ≤ a}

in the xy-plane (see Figure 3.7.5 below for an example). More generally, for any 0 ≤ α <
β < 2π, F maps the rectangular region

E = {(r, θ) : 0 ≤ r ≤ a, α ≤ θ < β}

in the rθ-plane onto a region D in the xy-plane which is the sector of the closed disk
B̄2((0, 0), a) which lies between radii of angles α and β (see Figure 3.7.4). Another basic
example is an annulus: for any 0 < a < b, F maps the rectangular region

E = {(r, θ) : a ≤ r ≤ b, 0 ≤ θ < 2π}

in the rθ-plane onto the annulus

D = {(x, y) : a ≤ x2 + y2 ≤ b}

in the xy-plane. Figure 3.7.6 illustrates this mapping for the upper half of an annulus.
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Figure 3.7.4 Polar coordinate change of variables

Example Let V be the volume of the region which lies beneath the paraboloid with
equation z = 4− x2 − y2 and above the xy-plane. In Section 3.6, we saw that

V =

∫ ∫

D

(4− x2 − y2)dxdy = 8π,

where
D = {(x, y) : x2 + y2 ≤ 4}.

The use of polar coordinates greatly simplifies the evaluation of this integral. With the
polar coordinate change of variables

x = r cos(θ)

and
y = r sin(θ),

the closed disk D in the xy-plane corresponds to the closed rectangle

E = {(r, θ) : 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π}

in the rθ-plane (see Figure 3.7.5). Note that in describing E we have allowed θ = 2π,
but this has no affect on our outcome since a line has no area in R2. Moreover, if we let
f(x, y) = 4− x2 − y2, then

f(F (r, θ)) = f(r cos(θ), r sin(θ))

= 4− r2 cos2(θ)− r2 sin(θ)

= 4− r2(cos2(θ) + sin2(θ)

= 4− r2,
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Figure 3.7.5 Polar coordinate change of variables maps [0, 2]× [0, 2π] to B̄2((0, 0), 2)

which also follows from the fact that r2 = x2 + y2. Now

∂(x, y)

∂(r, θ)
=



∂

∂r
r cos(θ)

∂

∂θ
r cos(θ)

∂

∂r
r sin(θ)

∂

∂θ
r sin(θ)


 =

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]
, (3.7.11)

so

det
∂(x, y)

∂(r, θ)
= r cos2(θ) + r sin2(θ) = r(cos2(θ) + sin2(θ)) = r. (3.7.12)

Hence, using (3.7.5), we have

∫ ∫

D

(4− x2 − y2)dxdy =

∫ ∫

E

(4− r2)

∣∣∣∣det
∂(x, y)

∂(r, θ)

∣∣∣∣ drdθ

=

∫ 2

0

∫ 2π

0

(4− r2)rdθdr

=

∫ 2

0

2π(4r − r3)dr

= 2π

(
2r2 − r4

4

) ∣∣∣∣
2

0

= 2π(8− 4)

= 8π.

Example SupposeD is the part of the region between the circles with equations x2+y2 =
1 and x2 + y2 = 9 which lies above the x-axis. That is,

D = {(x, y) : 1 ≤ x2 + y2 ≤ 9, x ≥ 0}.
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Figure 3.7.6 Polar coordinates map [1, 3]× [0, π] to top half of an annulus

We wish to evaluate ∫ ∫

D

e−(x2+y2)dxdy.

Under the polar coordinate change of variables

x = r cos(θ)

and
y = r sin(θ),

the annular region D corresponds to the closed rectangle

E = {(r, θ) : 1 ≤ r ≤ 3, 0 ≤ θ ≤ π},

as illustrated in Figure 3.7.6. Moreover, x2 + y2 = r2 and, as we saw in the previous
example, ∣∣∣∣det

∂(x, y)

∂(r, θ)

∣∣∣∣ = r.

Hence ∫ ∫

D

e−(x2+y2)dxdy =

∫ ∫

E

re−r2drdθ

=

∫ 3

1

∫ π

0

re−r2dθdr

=

∫ 3

1

πre−r2dr

= −π
2
e−r2

∣∣∣
3

1

=
π

2
(e−1 − e−9).

Note that in this case the change of variables not only simplified the region of integra-
tion, but also put the function being integrated into a form to which we could apply the
Fundamental Theorem of Calculus.
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P
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y

ϕ

θ
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ρ
cos(  )ρ

sin(  )ρ

ϕ

ϕ

Figure 3.7.7 Spherical and Cartesian coordinates for a point P

Spherical coordinates

Next consider the following extension of polar coordinates to three space: given a point
P with Cartesian coordinates (x, y, z), let ρ be the distance from P to the origin, θ be
the angle coordinate for the polar coordinates of (x, y, 0) (the projection of P onto the
xy-plane), and let ϕ be the angle between the vector from the origin to P and the positive
z-axis, measured from 0 to π. If x 6= 0, we have

ρ =
√
x2 + y2 + z2, (3.7.13)

tan(θ) =
y

x
, (3.7.14)

and
cos(ϕ) =

z√
x2 + y2 + z2

, (3.7.15)

where 0 ≤ θ < 2π and 0 ≤ ϕ ≤ π. As with polar coordinates, if x = 0 we let θ = π
2 if

y > 0, θ = 3π
2 if y < 0, and θ is undefined if y = 0. See Figure 3.7.7. Conversely, given

a point P with spherical coordinates (ρ, θ, ϕ), the projection of P onto the xy-plane will
have polar coordinate r = ρ sin(ϕ). Hence the Cartesian coordinates of P are

x = ρ cos(θ) sin(ϕ), (3.7.16)

y = ρ sin(θ) sin(ϕ), (3.7.17)

and
z = ρ cos(ϕ). (3.7.18)

Example If a point P has Cartesian coordinates (2,−2, 1), then its spherical coordinates
satisfy

ρ =
√
4 + 4 + 1 = 3,
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tan(θ) =
−2

2
= −1,

and

cos(ϕ) =
1√

4 + 4 + 1
=

1

3
.

Hence we have

θ =
7π

4

and

ϕ = cos−1

(
1

3

)
= 1.2310,

where we have rounded the value of ϕ to four decimal places. Hence P has spherical
coordinates

(
3, 7π4 , 1.2310

)
.

Example If a point P has spherical coordinates
(
4, π3 ,

3π
4

)
, then its Cartesian coordinates

are

x = 4 cos
(π
3

)
sin

(
3π

4

)
= 4

(
1

2

)(
1√
2

)
=

√
2,

y = 4 sin
(π
3

)
sin

(
3π

4

)
= 4

(√
3

2

)(
1√
2

)
=

√
6,

and

z = 4 cos

(
3π

4

)
= 4

(
− 1√

2

)
= −2

√
2.

Analogous to our work with polar coordinates, we think of the spherical coordinate
mapping

(x, y, z) = F (ρ, θ, ϕ) = (ρ cos(θ) sin(ϕ), ρ sin(θ) sin(ϕ), ρ cos(ϕ)) (3.7.19)

as a change of variables between ρθϕ-space and xyz-space. This mapping is particularly
useful for evaluating triple integrals because it maps rectangular regions in ρθϕ-space onto
spherical regions in xyz-space. For the most basic example, for any a > 0, F maps the
rectangular region

E = {(ρ, θ, ϕ) : 0 ≤ ρ ≤ a, 0 ≤ θ < 2π, 0 ≤ ϕ ≤ π}

in ρθϕ-space onto the closed ball

D = B̄3((0, 0, 0), a) = {(x, y, z) : x2 + y2 + z2 ≤ a}

in xyz-space. More generally, for any 0 < a < b, 0 ≤ α < β < 2π, and 0 ≤ γ < δ ≤ π, F
maps the rectangular region

E = {(ρ, θ, ϕ) : a ≤ ρ ≤ b, α ≤ θ < β, γ ≤ ϕ ≤ δ}
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onto a region D in xyz-space which lies between the concentric spheres S2((0, 0, 0), a) and
S2((0, 0, 0), b), and for which the angle θ lies between α and β and the angle ϕ between γ
and δ. For example, if α = 0, β = π, γ = 0, and δ = π

2 , then D is one-half of the region
lying between two concentric hemispheres with radii a and b.

Before using the spherical coordinate change of variable in (3.7.19) to evaluate an
integral using (3.7.5), we need to compute the determinate of the Jacobian of F . Now

∂(x, y, z)

∂(ρ, θ, ϕ)
=




∂

∂ρ
ρ cos(θ) sin(ϕ)

∂

∂θ
ρ cos(θ) sin(ϕ)

∂

∂ϕ
ρ cos(θ) sin(ϕ)

∂

∂ρ
ρ sin(θ) sin(ϕ)

∂

∂θ
ρ sin(θ) sin(ϕ)

∂

∂ϕ
ρ sin(θ) sin(ϕ)

∂

∂ρ
ρ cos(ϕ)

∂

∂θ
ρ cos(ϕ)

∂

∂ϕ
ρ cos(ϕ)




=




cos(θ) sin(ϕ) −ρ sin(θ) sin(ϕ) ρ cos(θ) cos(ϕ)

sin(θ) sin(ϕ) ρ cos(θ) sin(ϕ) ρ sin(θ) cos(ϕ)

cos(ϕ) 0 −ρ sin(ϕ)


 , (3.7.20)

so, expanding along the third row,

det
∂(x, y, z)

∂(ρ, θ, ϕ)
= cos(ϕ)(−ρ2 sin2(θ) sin(ϕ) cos(ϕ)− ρ2 cos2(θ) sin(ϕ) cos(ϕ))

− ρ sin(ϕ)(ρ cos2(θ) sin2(ϕ) + ρ sin2(θ) sin2(ϕ)

= −ρ2 sin(ϕ) cos2(ϕ)(sin2(θ) + cos2(θ))− ρ2 sin3(ϕ)(sin2(θ) + cos2(θ))

= −ρ2 sin(ϕ) cos2(ϕ)− ρ2 sin3(ϕ)

= −ρ2 sin(ϕ)(cos2(ϕ) + sin2(ϕ))

= −ρ2 sin(ϕ). (3.7.21)

Now ρ ≥ 0 and, since 0 ≤ ϕ ≤ π, sin(ϕ) ≥ 0, so

∣∣∣∣
∂(x, y, z)

∂(ρ, θ, ϕ)

∣∣∣∣ = ρ2 sin(ϕ). (3.7.22)

Example In an earlier example we used the fact that the volume of a sphere of radius 1
is 4π

3 . In this example we will verify that the volume of a sphere of radius a is 4
3πa

3. Let
V be the volume of

D = B̄3((0, 0, 0), a),

the closed ball of radius a centered at the origin in R3. Then

V =

∫ ∫ ∫

D

dxdydz.
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Although we may evaluate this integral using Cartesian coordinates, we will find it sig-
nificantly easier to use spherical coordinates. Using the spherical coordinate change of
variables

x = ρ cos(θ) sin(ϕ),

y = ρ sin(θ) sin(ϕ),

and
z = ρ cos(ϕ),

the region D in xyz-space corresponds to the region

E = {(ρ, θ, ϕ) : 0 ≤ ρ ≤ a, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π}

in ρθϕ-space. Using (3.7.22) in the change of variables formula (3.7.5), we have

V =

∫ ∫ ∫

D

dxdydz

=

∫ ∫ ∫

E

∣∣∣∣det
∂(x, y, z)

∂(ρ, θ, ϕ)

∣∣∣∣ dρdθdϕ

=

∫ 1

0

∫ 2π

0

∫ π

0

ρ2 sin(ϕ)dϕdθdρ

=

∫ a

0

∫ 2π

0

(−ρ2 cos(ϕ))
∣∣π
0
dθdρ

=

∫ a

0

∫ 2π

0

(−ρ2(−1− 1))dθdρ

= 2

∫ a

0

∫ 2π

0

ρ2dθdρ

= 4π

∫ a

0

ρ2dρ

=
4π

3
ρ3
∣∣∣
a

0

=
4

3
πa3.

Example Suppose we wish to evaluate

∫ ∫ ∫

D

log
√
x2 + y2 + z2 dxdydz,

whereD is the region in R3 which lies between the two spheres with equations x2+y2+z2 =
1 and x2 + y2 + z2 = 4 and above the xy-plane. Under the spherical coordinate change of
variables

x = ρ cos(θ) sin(ϕ),
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y = ρ sin(θ) sin(ϕ),

and

z = ρ cos(ϕ),

the region D in xyz-space corresponds to the region

E =
{
(ρ, θ, ϕ) : 1 ≤ ρ ≤ 2, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π

2

}

in ρθϕ-space. Using (3.7.22) in the change of variables formula (3.7.5), we have

∫ ∫ ∫

D

log
√
x2 + y2 + z2 dxdydz =

∫ ∫ ∫

E

log(ρ)

∣∣∣∣
∂(x, y, z)

∂(ρ, θ, ϕ)

∣∣∣∣ dρdθdϕ

=

∫ 2

1

∫ 2π

0

∫ π
2

0

ρ2 log(ρ) sin(ϕ)dϕdθdρ

=

∫ 2

1

∫ 2π

0

(−ρ2 log(ρ) cos(ϕ))
∣∣π2
0
dθdρ

=

∫ 2

1

∫ 2π

0

(−ρ2 log(ρ))(0− 1)dθdρ

=

∫ 2

1

∫ 2π

0

ρ2 log(ρ)dθdρ

= 2π

∫ 2

1

ρ2 log(ρ)dρ.

We use integration by parts to evaluate this final integral: letting

u = log(ρ) dv = ρ2dρ

du =
1

ρ
dρ v =

ρ3

3
,

we have

∫ ∫ ∫

D

log
√
x2 + y2 + z2 dxdydz = 2π

(
1

3
ρ3 log(ρ)

∣∣∣∣
2

1

− 1

3

∫ 2

1

ρ2dρ

)

=
16

3
π log(2)− 2πρ3

9

∣∣∣∣
2

1

=
16

3
π log(2)− 14π

9

=
2π

3

(
8 log(2)− 7

3

)
.
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Problems

1. Find the area of the region enclosed by the ellipse with equation x2 + 4y2 = 4.

2. Given a > 0 and b > 0, show that the area enclosed by the ellipse with equation

x2

a2
+
y2

b2
= 1

is πab.

3. Find the volume of the region enclosed by the ellipsoid with equation

x2

25
+ y2 +

z2

4
= 1.

4. Given a > 0, b > 0, and c > 0, show that the volume of the region enclosed by the
ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1

is 4
3πabc.

5. Find the polar coordinates for each of the following points given in Cartesian coordi-
nates.

(a) (1, 1) (b) (−2, 3)

(c) (−1, 3) (d) (4,−4)

6. Find the Cartesian coordinates for each of the following points given in polar coordi-
nates.

(a) (3, 0) (b)

(
2,

5π

6

)

(c) (5, π) (d)

(
4,

4π

3

)

7. Evaluate ∫ ∫

D

(x2 + y2)dxdy,

where D is the disk in R2 of radius 2 centered at the origin.

8. Evaluate ∫ ∫

D

sin(x2 + y2)dxdy,

where D is the disk in R2 of radius 1 centered at the origin.

9. Evaluate ∫ ∫

D

1

x2 + y2
dxdy,

where D is the region in the first quadrant of R2 which lies between the circle with
equation x2 + y2 = 1 and the circle with equation x2 + y2 = 16.
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10. Evaluate ∫ ∫

D

log(x2 + y2)dxdy,

where D is the region in R2 which lies between the circle with equation x2 + y2 = 1
and the circle with equation x2 + y2 = 4.

11. Using polar coordinates, verify that the area of a circle of radius r is πr2.

12. Let

I =

∫ ∞

−∞
e−

x2

2 dx.

(a) Show that

I2 =

∫ ∞

−∞

∫ ∞

−∞
e−

1
2 (x

2+y2)dxdy.

(b) Show that

I2 =

∫ ∞

0

∫ 2π

0

re−
r2

2 dθdr.

(c) Show that ∫ ∞

−∞
e−

x2

2 dx =
√
2π.

13. Find the spherical coordinates of the point with Cartesian coordinates (−1, 1, 2).

14. Find the spherical coordinates of the point with Cartesian coordinates (3, 2,−1).

15. Find the Cartesian coordinates of the point with spherical coordinates
(
2, 3π4 ,

2π
3

)
.

16. Find the Cartesian coordinates of the point with spherical coordinates
(
5, 5π3 ,

π
6

)
.

17. Evaluate ∫ ∫ ∫
(x2 + y2 + z2)dxdydz,

where D is the closed ball in R3 of radius 2 centered at the origin.

18. Evaluate ∫ ∫ ∫

D

1√
x2 + y2 + z2

dxdydz,

where D is the region in R3 between the two spheres with equations x2 + y2 + z2 = 4
and x2 + y2 + z2 = 9.

19. Evaluate ∫ ∫ ∫

D

sin(
√
x2 + y2 + z2 )dxdydz,

where D is the region in R3 described by x ≥ 0, y ≥ 0, z ≥ 0, and x2 + y2 + z2 ≤ 1.
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20. Evaluate ∫ ∫ ∫

D

e−(x2+y2+z2)dxdydz,

where D is the closed ball in R3 of radius 3 centered at the origin.

21. Let D be the region in R3 described by x2 + y2 + z2 ≤ 1 and z ≥
√
x2 + y2.

(a) Explain why the spherical coordinate change of variables maps the region

E =
{
(ρ, θ, ϕ) : 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π

4

}

onto D.

(b) Find the volume of D.

22. If a point P has Cartesian coordinates (x, y, z), then the cylindrical coordinates of P
are (r, θ, z), where r and θ are the polar coordinates of (x, y). Show that

∣∣∣∣det
∂(x, y, z)

∂(r, θ, z)

∣∣∣∣ = r.

23. Use cylindrical coordinates to evaluate

∫ ∫

D

√
x2 + y2dxdydz,

where D is the region in R3 described by 1 ≤ x2 + y2 ≤ 4 and 0 ≤ z ≤ 5.

24. A drill with a bit with a radius of 1 centimeter is used to drill a hole through the center
of a solid ball of radius 3 centimeters. What is the volume of the remaining solid?

25. Let D be the set of all points in the intersection of the two solid cylinders in R3

described by x2 + y2 ≤ 1 and x2 + z2 ≤ 1. Find the volume of D.
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Geometry, Limits, and
Continuity

In this chapter we will treat the general case of a function mapping Rm to Rn. Since the
cases m = 1 and n = 1 have been handled in previous chapters, our emphasis will be on
the higher dimensional cases, most importantly when m and n are 2 or 3. We will begin
in this section with some basic terminology and definitions.

Parametrized surfaces

If f : Rm → Rn has domain D, we call the set S of all points y in Rn for which y = f(x)
for some x in D the image of f . That is,

S = {f(x) : x ∈ D}, (4.1.1)

which is the same as what we have previously called the range of f . If m = 1, S is a
curve as defined in Section 2.1. If m > 1 and n > m, then we call S an m-dimensional
surface in Rn. If we let x = (x1, x2, . . . , xm) and (y1, y2, . . . , yn) = f(x1, x2, . . . , xn), then,
for k = 1, 2, . . . , n, we call the function fk : Rn → R defined by

fk(x1, x2, . . . , xm) = yk

the k-th coordinate function of f . We call the system of equations

y1 = f1(x1, x2, . . . , xm),

y2 = f2(x1, x2, . . . , xm),

... =
...

yn = fn(x1, x2, . . . , xm),

(4.1.2)

a parametrization of the surface S. Note that fk is the type of function we studied in
Chapter 3. On the other hand, if we fix values of xi for all i 6= k, then the function
ϕk : R → Rn defined by

ϕk(t) = f(x1, x2, . . . , xk−1, t, xk+1, . . . , xm) (4.1.3)

is of the type we studied we Chapter 2. In particular, for each k = 1, 2, . . . , n, ϕk

parametrizes a curve which lies on the surface S. The following examples illustrate how
the latter remark is useful when trying to picture a parametrized surface S.

Example Consider f : R2 → R3 defined by

f(s, t) = (t cos(s), t sin(s), t)

1 Copyright c© by Dan Sloughter 2001
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Figure 4.1.1 Cone parametrized by f(s, t) = (t cos(s), t sin(s), t)

for 0 ≤ s ≤ 2π and −∞ < t <∞. The image of f is the surface S in R3 parametrized by
the equations

x = t cos(s),

y = t sin(s),

z = t.

Note that for a fixed value of t, the function

ϕ1(s) = (t cos(s), t sin(s), t)

parametrizes a circle of radius t on the plane z = t with center at (0, 0, t). On the other
hand, for a fixed value of s, the function

ϕ2(t) = (t cos(s), t sin(s), t) = t(cos(s), sin(s), 1)

parametrizes a line through the origin in the direction of the vector (cos(s), sin(s), 1. Hence
the surface S is a cone in R3, part of which is shown in Figure 4.1.1. Notice how the surface
was drawn by plotting the curves corresponding to fixed values of s and t (that is, the curves
parametrized by ϕ1 and ϕ2), and then filling in the resulting curvilinear “rectangles.”

Example For a fixed a > 0, consider the function f : R2 → R3 defined by

f(s, t) = (a cos(s) sin(t), a sin(s) sin(t), a cos(t))
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Figure 4.1.2 Unit sphere parametrized by f(s, t) = (cos(s) sin(t), sin(s) sin(t), cos(t))

for 0 ≤ s ≤ 2π and 0 ≤ t ≤ π. The image of f is the surface S in R3 parametrized by the
equations

x = a cos(s) sin(t),

y = a sin(s) sin(t),

z = a cos(t).

(4.1.4)

Note that these are the equations for the spherical coordinate change of variables discussed
in Section 3.7, with ρ = a, θ = s, and ϕ = t. Since a is fixed while s varies from 0 to 2π and
t varies from 0 to π, it follows that S is a sphere of radius a with center (0, 0, 0). Figure
4.1.2 displays S when a = 1. If we had not previously studied spherical coordinates, we
could reach this conclusion about S as follows. First note that

x2 + y2 + z2 = a2 cos2(s) sin2(t) + a2 sin2(s) sin2(t) + a2 cos2(t)

= a2 sin2(t)(cos2(s) + sin2(s)) + a2 cos2(t)

= a2(sin2(t) + cos2(t))

= a2,

from which it follows that every point of S lies on the sphere of radius a centered at the
origin. Now for a fixed value of t,

ϕ1(s) = (a cos(s) sin(t), a sin(s) sin(t), a cos(t))

parametrizes a circle in the plane z = a cos(t) with center (0, 0, a cos(t)) and radius a sin(t).
As t varies from 0 to π, these circles vary from a circle in the z = a plane with center
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(0, 0, a) and radius 0 (when t = 0) to a circle in the xy-plane with center (0, 0, 0) and radius
a (when t = π

2 ) to a circle in the z = −a plane with center (0, 0,−a) and radius 0 (when
t = π). In other words, the circles fill in all the “lines of latitude” of the sphere from the
“North Pole” to the “South Pole,” and hence S is all of the sphere. One may also show
that the functions

ϕ2(t) = (a cos(s) sin(t), a sin(s) sin(t), a cos(t))

parametrize the “lines of longitude” of S as s varies from 0 to 2π. Both the lines of
“latitude” and “longitude” are visible in Figure 4.2.2.

Example Suppose 0 < b < a and define f : R2 → R3 by

f(s, t) = ((a+ b cos(t)) cos(s), (a+ b cos(t)) sin(s), b sin(t))

for 0 ≤ s ≤ 2π and 0 ≤ t ≤ 2π. The image of f is the surface T parametrized by the
equations

x = (a+ b cos(t)) cos(s),

y = (a+ b cos(t)) sin(s),

z = b sin(t).

Note that for a fixed value of t,

ϕ1(s) = ((a+ b cos(t)) cos(s), (a+ b cos(t)) sin(s), b sin(t))

parametrizes a circle in the plane z = b sin(t) with center (0, 0, b sin(t) and radius a+b cos(t).
In particular, when t = 0, we have a circle in the xy-plane with center (0, 0, 0) and radius
a + b; when t = π

2 , we have a circle on the plane z = b with center (0, 0, b) and radius a;
when t = π, we have a circle on the xy-plane with center (0, 0, 0) and radius a − b; when
t = 3π

2 , we have a circle on the z = −b plane with center (0, 0,−b) and radius a; and when
t = 2π, we are back to a circle in the xy-plane with center (0, 0, 0) and radius a + b. For
fixed values of s, the curves parametrized by

ϕ2(t) = ((a+ b cos(t)) cos(s), (a+ b cos(t)) sin(s), b sin(t))

are not identified as easily. However, some particular cases are illuminating. When s = 0,
we have a circle in the xz-plane with center (a, 0, 0) and radius b; when s = π

2 , we have
a circle in the yz-plane with center (0, a, 0) and radius b; when s = π, we have a circle
in the xz-plane with center (−a, 0, 0) and radius b; when s = 3π

2 , we have a circle in the
yz-plane with center (0,−a, 0) and radius b; and when t = 2π, we are back to a circle in
the xz-plane with center (a, 0, 0) and radius b. Putting all this together, we see that T is
a torus, the surface of a doughnut shaped object. Figure 4.1.3 shows one such torus, the
case a = 3 and b = 1.
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Figure 4.1.3 A torus: f(s, t) = (3 + cos(t)) cos(s), (3 + cos(t)) sin(s), sin(t))

Vector fields

We call a function f : Rn → Rn, that is, a function for which the domain and range space
have the same dimension, a vector field. We have seen a few examples of such functions
already. For example, the change of variable functions in Section 3.7 were of this type.
Also, given a function g : Rn → R, the gradient of g,

∇g(x) =
(

∂

∂x1
g(x),

∂

∂x2
g(x), . . . ,

∂

∂xn
g(x)

)
,

is a function from Rn to Rn. As we saw in our discussion of gradient vector fields in Section
3.2, a plot showing the vectors f(x) at each point in a rectangular grid provides a useful
geometric view of a vector field f .

Example Consider the vector field f : Rn → Rn defined by

f(x) = − x

‖x‖2

for all x 6= 0. Note that f(x) is a vector of length

∥∥∥∥
x

‖x‖2
∥∥∥∥ =

‖x‖
‖x‖2 =

1

‖x‖

pointing in the direction opposite that of x. If n = 2, the coordinate functions of f are

f1(x1, x2) = − x1
x21 + x22

and
f2(x1, x2) = − x2

x21 + x22
.
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Figure 4.1.4 Vector field f(x) =
x

‖x‖2 for n = 2 and n = 3

Figure 4.1.4 shows a plot of the vectors f(x) for this case, drawn on a grid over the rectangle
[−3, 3]× [−3, 3], and for the case n = 3, using the cube [−3, 3]× [−3, 3]× [−3, 3]. Note that
these plots do not show the vectors f(x) themselves, but vectors which have been scaled
proportionately so they do not overlap one another.

Limits and continuity

The definitions of limits and continuity for functions f : Rm → Rn follow the familiar
pattern.

Definition Let a be a point in Rm and let O be the set of all points in the open ball of
radius r > 0 centered at a except a. That is,

O = {x : x ∈ Bn(a, r),x 6= a}.

Suppose f : Rm → Rn is defined for all x in O. We say the limit of f(x) as x approaches
a is L, written lim

x→a
f(x) = L, if for every sequence of points {xk} in O,

lim
k→∞

f(xk) = L (4.1.5)

whenever lim
k→∞

xk = a.

In Section 2.1 we saw that a sequence of points in Rn has a limit if and only if the
individual coordinates of the points in the sequence each have a limit. The following
proposition is an immediate consequence.
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Proposition If fk : Rm → R, k = 1, 2, . . . , n, is the kth coordinate function of f : Rm →
Rn, then

lim
x→a

f(x) = (L1, L2, . . . , Ln)

if and only if
lim
x→a

fk(x) = Lk

for k = 1, 2, . . . , n.

In other words, the computation of limits for functions f : Rm → Rn reduces to the
familiar problem of computing limits of real-valued functions, as we discussed in Section
3.1.

Example If
f(x, y, z) = (x2 − 3yz, 4xz),

a function from R3 to R2, then, for example,

lim
(x,y,z)→(1,−2,3)

f(x, y, z) =

(
lim

(x,y,z)→(1,−2,3)
(x2 − 3yz), lim

(x,y,z)→(1,−2,3)
4xz

)
= (19, 12).

Definition Suppose f : Rm → Rn is defined for all x in some open ball Bn(a, r), r > 0.
We say f is continuous at a if lim

x→a
f(x) = f(a).

The following result is an immediate consequence of the previous proposition.

Proposition If fk : Rm → R, k = 1, 2, . . . , n, is the kth coordinate function of f : Rm →
Rn, then f is continuous at a point a if and only if fk is continuous at a for k = 1, 2, . . . , n.

In other words, checking for continuity for a function f : Rm → Rn reduces to checking
the continuity of real-valued functions, a familiar problem from Section 3.1.

Example The function
f(x, y) = (3 sin(x+ y), 4x2y)

has coordinate functions
f1(x, y) = 3 sin(x+ y)

and
f2(x, y) = 4x2y.

Since, from our results in Section 3.1, both f1 and f2 are continuous at every point in R2,
it follows that f is continuous at every point in R2.

Definition We say a function f : Rm → Rn is continuous on an open set U if f is
continuous at every point u in U .

Example We may restate the conclusion of the previous example by saying that

f(x, y) = (3 sin(x+ y), 4x2y)

is continuous on R2.
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Problems

1. For each of the following, plot the surface parametrized by the given function.

(a) f(s, t) = (t2 cos(s), t2 sin(s), t2), 0 ≤ s ≤ 2π, 0 ≤ t ≤ 3

(b) f(u, v) = (3 cos(u) sin(v), sin(u) sin(v), 2 cos(v)), 0 ≤ u ≤ 2π, 0 ≤ v ≤ π

(c) g(s, t) = ((4 + 2 cos(t)) cos(s), (4 + 2 cos(t)) sin(s), 2 sin(t)), 0 ≤ s ≤ 2π, 0 ≤ t ≤ 2π

(d) f(s, t) = ((5 + 2 cos(t)) cos(s), 2(5 + 2 cos(t)) sin(s), sin(t)), 0 ≤ s ≤ 2π, 0 ≤ t ≤ 2π

(e) h(u, v) = (sin(v), (3 + cos(v)) cos(u), (3 + cos(v)) sin(u)), 0 ≤ u ≤ 2π, 0 ≤ v ≤ 2π

(f) g(s, t) = (s, s2 + t2, t), −2 ≤ s ≤ 2, −2 ≤ t ≤ 2

(g) f(x, y) = (y cos(x), y, y sin(x)), 0 ≤ x ≤ 2π, −5 ≤ y ≤ 5

2. Suppose f : R2 → R and we define F : R2 → R3 by F (s, t) = (s, t, f(s, t)). Describe
the surface parametrized by F .

3. Find a parametrization for the surface that is the graph of the function f(x, y) =
x2 + y2.

4. Make plots like those in Figure 4.1.4 for each of the following vector fields. Experiment
with the rectangle used for the grid, as well as with the number of vectors drawn.

(a) f(x, y) = (y,−x)
(b) g(x, y) = (y,− sin(x))

(c) f(u, v) = (v, u− u3 − v)

(d) f(x, y) = (x(1− y2)− y, x)

(e) f(x, y, z) =

(
10(y − x), 28x− y − xz,−8

3
z + xy

)

(f) f(x, y, z) =
1√

x2 + y2 + z2
(x, y, z)

(g) g(u, v, w) = − 1

(u− 1)2 + (v − 2)2 + (w − 1)2
(u− 1, v − 2, w − 1)

5. Find the set of points in R2 for which the vector field

f(x, y) =

(
4x sin(x− y),

4x+ 3y

2x− y

)

is continuous.

6. For which points in Rn is the vector field

f(x) =
x

log(‖x‖)

a continuous function?
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Best Affine Approximations

Best affine approximations

The following definitions should look very familiar.

Definition Suppose f : Rm → Rn is defined on an open ball containing the point c.
We call an affine function A : Rm → Rn the best affine approximation to f at c if (1)
A(c) = f(c) and (2) ‖R(h)‖ is o(h), where

R(h) = f(c+ h)−A(c+ h). (4.2.1)

Suppose A : Rn → Rn is the best affine approximation to f at c. Then, from our work
in Section 1.5, there exists an n×m matrix M and a vector b in Rn such that

A(x) =Mx+ b (4.2.2)

for all x in Rm. Moreover, the condition A(c) = f(c) implies f(c) = Mc + b, and so
b = f(c)−Mc. Hence we have

A(x) =Mx+ f(c)−Mc =M(x− c) + f(c) (4.2.3)

for all x in Rm. Thus to find the best affine approximation we need only identify the
matrix M in (4.2.3).

Definition Suppose f : Rm → Rn is defined on an open ball containing the point c. If
f has a best affine approximation at c, then we say f is differentiable at c. Moreover, if
the best affine approximation to f at c is given by

A(x) =M(x− c) + f(c), (4.2.4)

then we call M the derivative of f at c and write Df(c) =M .

Now suppose f : Rm → Rn and A is an affine function with A(c) = f(c). Let fk and
Ak be the kth coordinate functions of f and A, respectively, for k = 1, 2, . . . , n, and let R
be the remainder function

R(h) = f(c+ h)−A(c+ h)

= (f1(c+ h)−A1(c+ h), f2(c+ h)−A2(c+ h), . . . , fn(c+ h)−An(c+ h)).

1 Copyright c© by Dan Sloughter 2001
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Then

R(h)

‖h‖ =

(
f1(c+ h)−A1(c+ h)

‖h‖ ),
f2(c+ h)−A2(c+ h)

‖h‖ , . . . ,
fn(c+ h)−An(c+ h)

‖h‖

)
,

and so

lim
h→0

‖R(h‖
‖h‖ = 0, (4.2.5)

that is, A is the best affine approximation to f at c, if and only if

lim
h→0

fk(c+ h)−Ak(c+ h)

‖h‖ = 0 (4.2.6)

for k = 1, 2, . . . , n. But (4.2.6) is the statement that Ak is the best affine approximation to
fk at c. In other words, A is the best affine approximation to f at c if and only if Ak is the
best affine approximation to fk at c for k = 1, 2, . . . , n. This result has many interesting
consequences.

Proposition If fk : Rm → R is the kth coordinate function of f : Rm → Rn, then f is
differentiable at a point c if and only if fk is differentiable at c for k = 1, 2, . . . , n.

Definition If fk : Rm → R is the kth coordinate function of f : Rm → Rn, then we say
f is C1 on an open set U if fk is C1 on U for k = 1, 2, . . . , n.

Putting our results in Section 3.3 together with the previous proposition and definition,
we have the following basic result.

Theorem If f : Rm → Rn is C1 on an open ball containing the point c, then f is
differentiable at c.

Suppose f : Rm → Rn is differentiable at c = (c1, c2, . . . , cm) with best affine approxi-
mation A and fk : Rm → R and Ak : Rm → R are the coordinate functions of f and A,
respectively, for k = 1, 2, . . . , n. Since Ak is the best affine approximation to fk at c, we
know from Section 3.3 that

Ak(x) = ∇fk(c) · (x− c) + fk(c) (4.2.7)

for all x in Rm. Hence, writing the vectors as column vectors, we have

A(x) =




A1(x)
A2(x)

...
An(x)




=




∇f1(c) · (x− c) + f1(c)

∇f2(c) · (x− c) + f2(c)
...

∇fn(c) · (x− c) + fn(c)
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=




∂

∂x1
f1(c)

∂

∂x2
f1(c) · · · ∂

xm
f1(c)

∂

∂x1
f2(c)

∂

∂x2
f2(c) · · · ∂

xm
f2(c)

...
...

. . .
...

∂

∂x1
fn(c)

∂

∂x2
fn(c) · · · ∂

xm
fn(c)







x1 − c1
x2 − c2

...
xm − cm


+




f1(c)
f2(c)
...

fm(c)


 . (4.2.8)

It follows that the n×m matrix in (4.2.8) is the derivative of f .

Theorem If f : Rm → Rn is differentiable at a point c, then the derivative of f at c is
given by

Df(c) =




∂

∂x1
f1(c)

∂

∂x2
f1(c) · · · ∂

xm
f1(c)

∂

∂x1
f2(c)

∂

∂x2
f2(c) · · · ∂

xm
f2(c)

...
...

. . .
...

∂

∂x1
fn(c)

∂

∂x2
fn(c) · · · ∂

xm
fn(c)




. (4.2.9)

We call the matrix in (4.2.9) the Jacobian matrix of f , after the German mathematician
Carl Gustav Jacob Jacobi (1804-1851). Note that we have seen this matrix before in our
discussion of change of variables in integrals in Section 3.7.

Example Consider the function f : R3 → R2 defined by

f(x, y, z) = (xyz, 3x− 2yz).

The coordinate functions of f are

f1(x, y, z) = xyz

and
f2(x, y, z) = 3x− 2yz.

Now
∇f1(x, y, z) = (yz, xz, xy)

and
∇f2(x, y, z) = (3,−2z,−2y),

so the Jacobian of f is

Df(x, y, z) =

[
yz xz xy
3 −2z −2y

]
.

Hence, for example,

Df(1, 2,−1) =

[
−2 −1 2
3 2 −4

]
.
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Since f(1, 2,−1) = (−2, 7), the best affine approximation to f at (1, 2,−1) is

A(x, y, z) =

[
−2 −1 2
3 2 −4

]

x− 1
y − 2
z + 1


+

[
−2
7

]

=

[
−2(x− 1)− (y − 2) + 2(z + 1)− 2
3(x− 1) + 2(y − 2)− 4(z + 1) + 7

]

=

[
−2x− y + 2z + 4
3x+ 2y − 4z − 4

]
.

Tangent planes

Suppose f : R2 → R3 parametrizes a surface S in R3. If f1, f2, and f3 are the coordinate
functions of f , then the best affine approximation to f at a point (s0, t0) is given by

A(s, t) =




∂

∂s
f1(t0, s0)

∂

∂t
f1(t0, s0)

∂

∂s
f2(t0, s0)

∂

∂t
f2(t0, s0)

∂

∂s
f3(t0, s0)

∂

∂t
f3(t0, s0)




[
s− s0
t− t0

]
+



f1(s0, t0)
f2(s0, t0)
f3(s0, t0)




=




∂

∂s
f1(s0, t0)

∂

∂s
f2(s0, t0)

∂

∂s
f3(s0, t0)



(s− s0) +




∂

∂t
f1(s0, t0)

∂

∂t
f2(s0, t0)

∂

∂t
f3(s0, t0)



(t− t0) +



f1(s0, t0)
f2(s0, t0)
f3(s0, t0)


 .(4.2.10)

If the vectors

v =




∂

∂s
f1(s0, t0)

∂

∂s
f2(s0, t0)

∂

∂s
f3(s0, t0)




(4.2.11)

and

w =




∂

∂t
f1(s0, t0)

∂

∂t
f2(s0, t0)

∂

∂t
f3(s0, t0)




(4.2.12)

are linearly independent, then (4.2.10) implies that the image of A is a plane in R3 which
passes through the point f(s0, t0) on the surface S. Moreover, if we let C1 be the curve
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on S through the point f(s0, t0) parametrized by ϕ1(s) = f(s, t0) and C2 be the curve on
S through the point f(s0, t0) parametrized by ϕ2(t) = f(s0, t), then v is tangent to C1 at
f(s0, t0) and w is tangent to C2 at f(s0, t0). Hence we call the image of A the tangent
plane to the surface S at the point f(s0, t0).

Example Let T be the torus parametrized by

f(s, t) = ((3 + cos(t)) cos(s), (3 + cos(t)) sin(s), sin(t))

for 0 ≤ s ≤ 2π and 0 ≤ t ≤ 2π. Then

Df(s, t) =



−(3 + cos(t)) sin(s) − sin(t) cos(s)
(3 + cos(t)) cos(s) − sin(t) sin(s)

0 cos(t)


 .

Thus, for example,

Df
(π
2
,
π

4

)
=




−
(
3 +

1√
2

)
0

0 − 1√
2

0
1√
2



.

Since

f
(π
2
,
π

4

)
=

(
0, 3 +

1√
2
,
1√
2

)
,

the best affine approximation to f at
(
π
2 ,

π
4

)
is

A(s, t) =




−
(
3 +

1√
2

)
0

0 − 1√
2

0
1√
2






s− π

2

t− π

4


+




0

3 +
1√
2

1√
2




=



−
(
3 +

1√
2

)

0
0



(
s− π

2

)
+




0

− 1√
2
1√
2



(
t− π

4

)
+




0

3 +
1√
2

1√
2


 .

Hence

x = −
(
3 +

1√
2

)(
s− π

2

)
,

y = − 1√
2

(
t− π

4

)
+ 3 +

1√
2
,

z =
1√
2

(
t− π

4

)
+

1√
2
,
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-4
-2

0
2

4

x

-4
-2

0
2

4y

-1

0

1
z

-1

0

1
z

Figure 4.2.1 Torus with a tangent plane

are parametric equations for the plane P tangent to T at
(
0, 3 + 1√

2
, 1√

2

)
. See Figure

4.2.1.

Chain rule

We are now in a position to state the chain rule in its most general form. Consider functions
g : Rm → Rq and f : Rq → Rn and suppose g is differentiable at c and f is differentiable
at g(c). Let h : Rm → Rn be the composition h(x) = f(g(x)) and denote the coordinate
functions of f , g, and h by fi, i = 1, 2, . . . , n, gj , j = 1, 2 . . . , q, and hk, k = 1, 2, . . . , n,
respectively. Then, for k = 1, 2, . . . , n,

hk(x1, x2, . . . , xm) = fk(g1(x1, x2, . . . , xm), g2(x1, x2, . . . , xm), . . . , gq(x1, x2, . . . , xm)).

Now if we fix m − 1 of the variables x1, x2, . . . , xm, say, all but xj , then hk is the
composition of a function from R to Rq with a function from Rq to R. Thus we may use
the chain rule from Section 3.3 to compute ∂

∂xj
hk(c), namely,

∂

∂xj
hk(c) = ∇fk(g(c)) ·

(
∂

∂xj
g1(c),

∂

∂xj
g2(c), . . . ,

∂

xj
gq(c)

)

=
∂

∂x1
fk(g(c))

∂

∂xj
g1(c) +

∂

∂x2
fk(g(c))

∂

∂xj
g2(c)+

· · ·+ ∂

∂xq
fk(g(c))

∂

∂xj
gq(c).

(4.2.13)

Hence ∂
∂xj

hk(c) is equal to the dot product of the kth row of Df(g(c)) with the jth column

of Dg(c). Moreover, if g is C1 on an open ball about c and f is C1 on an open ball about
g(c), then (4.2.13) shows that ∂

∂xj
hk is continuous on an open ball about c. It follows from

our results in Section 3.3 that h is differentiable at c. Since ∂
∂xj

hk is the entry in the kth

row and jth column of Dh(c), (4.2.13) implies Dh(c) = Df(g(c))Dg(c). This result, the
chain rule, may be proven without assuming that f and g are both C1, and so we state
the more general result in the following theorem.
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Chain Rule If g : Rm → Rq is differentiable at c and f : Rq → Rn is differentiable at
g(c), then f ◦ g is differentiable at c and

D(f ◦ g)(c) = Df(g(c))Dg(c). (4.2.14)

Equivalently, the chain rule says that if A is the best affine approximation to g at c and
B is the best affine approximation to f at g(c), then B ◦A is the best affine approximation
to f ◦ g at c. That is, the best affine approximation to a composition of functions is the
composition of the individual best affine approximations.

Example Suppose g : R2 → R3 is defined by

g(s, t) = (cos(s) sin(t), sin(s) sin(t), cos(t))

and f : R3 → R2 is defined by

f(x, y, z) = (10xyz, x2 − yz).

Then

Dg(s, t) =



− sin(s) sin(t) cos(s) cos(t)
cos(s) sin(t) sin(s) cos(t)

0 − sin(t)




and

Df(x, y, z) =

[
10yz 10xz 10xy
2x −z −y

]
.

Let h(s, t) = f(g(s, t)). To find Dh
(
π
4 ,

π
4

)
, we first note that

g
(π
4
,
π

4

)
=

(
1

2
,
1

2
,
1√
2

)
,

Dg
(π
4
,
π

4

)
=




−1

2

1

2

1

2

1

2

0 − 1√
2




and

Df
(
g
(π
4
,
π

4

))
= Df

(
1

2
,
1

2
,
1√
2

)
=




5√
2

5√
2

5

2

1 − 1√
2

−1

2


 .
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Thus
Dh

(π
4
,
π

4

)
= Df

(
g
(π
4
,
π

4

))
Dg
(π
4
,
π

4

)

=




5√
2

5√
2

5

2

1 − 1√
2

−1

2







−1

2

1

2

1

2

1

2

0 − 1√
2




=




0
5

2
√
2

−1 +
√
2

2
√
2

1

2


 .

Problems

1. Find the best affine approximation for each of the following functions at the specified
point c.

(a) f(x, y) = (x2 + y2, 3xy), c = (1, 2)

(b) g(x, y, z) = (sin(x+ y + z), xy cos(z)), c =
(
0, π4 ,

π
4

)

(c) h(s, t) = (3s2 + t, s− t, 4st2, 4t− s), c = (−1, 3)

2. Each of the following functions parametrizes a surface S in R3. In each case, find
parametric equations for the tangent plane P passing through the point f(s0, t0). Plot
S and P together.

(a) f(s, t) = (t cos(s), t sin(s), t), (s0, t0) =
(
π
2 , 2
)

(b) f(s, t) = (t2 cos(s), t2, t2 sin(s)), (s0, t0) = (0, 1)

(c) f(s, t) = (cos(s) sin(t), sin(s) sin(t), cos(t)), (s0, t0) =
(
π
2 ,

π
4

)

(d) f(s, t) = (3 cos(s) sin(t), sin(s) sin(t), 2 cos(t)), (s0, t0) =
(
π
4 ,

π
4

)

(e) f(s, t) = ((4 + 2 cos(t)) cos(s), (4 + 2 cos(t)) sin(s), 2 sin(t)), (s0, t0) =
(
3π
4 ,

π
4

)

3. Let S be the graph of a function f : R2 → R. Define the function F : R2 → R3

by F (s, t) = (s, t, f(s, t)). We may find an equation for the plane tangent to S at
(s0, t0, f(s0, t0)) using either the techniques of Section 3.3 (looking at S as the graph
of f) or the techniques of this section (looking at S as a surface parametrized by F ).
Verify that these two approaches yield equations for the same plane, both in the special
case when f(s, t) = s2 + t2 and (s0, t0) = (1, 2), and in the general case.

4. Use the chain rule to find the derivative of f ◦g at the point c for each of the following.

(a) f(x, y) = (x2y, x− y), g(s, t) = (3st, s2 − 4t), c = (1,−2)

(b) f(x, y, z) = (4xy, 3xz), g(s, t) =

(
st2 − 4t, s2,

4

st

)
, c = (−2, 3)

(c) f(x, y) = (3x+ 4y, 2x2y, x− y), g(s, t, u) = (4s− 3t+ u, 5st2), c = (1,−2, 3)
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5. Suppose
x = f(u, v),

y = g(u, v),

and
u = h(s, t),

v = k(s, t).

(a) Show that
∂x

∂s
=
∂x

∂u

∂u

∂s
+
∂x

∂v

∂v

∂s

and
∂x

∂t
=
∂x

∂u

∂u

∂t
+
∂x

∂v

∂v

∂t
.

(b) Find similar expressions for ∂y
∂s and ∂y

∂t .

6. Use your results in Problem 5 to find ∂x
∂s ,

∂x
∂t ,

∂y
∂s , and

∂y
∂t when

x = u2v,

y = 3u− v,

and
u = 4t2 − s2,

v =
4t

s
.

7. Suppose T is a function of x and y where

x = r cos(θ),

y = r sin(θ).

Show that
∂T

∂r
=
∂T

∂x
cos(θ) +

∂T

∂y
sin(θ)

and
∂T

∂θ
= −∂T

∂x
r sin(θ) +

∂T

∂y
r cos(θ).

8. Suppose the temperature at a point (x, y) in the plane is given by

T = 100− 20√
1 + x2 + y2

.

(a) If (r, θ) represents the polar coordinates of (x, y), use Problem 7 to find ∂T
∂r and

∂T
∂θ when r = 4 and θ = π

6 .

(b) Show that ∂T
∂θ = 0 for all values of r and θ. Can you explain this result geometri-

cally?
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9. Let T be the torus parametrized by

x = (4 + 2 cos(t)) cos(s),

y = (4 + 2 cos(t)) sin(s),

z = 2 sin(t),

for 0 ≤ s ≤ 2π and 0 ≤ t ≤ 2π.

(a) If U is a function of x, y, and z, find general expressions for ∂U
∂s and ∂U

∂t .

(b) Suppose

U = 80− 40e−
1
20 (x

2+y2+z2)

gives the temperature at a point (x, y, z) on T . Find expressions for ∂U
∂s and ∂U

∂t in
this case. What is the geometrical interpretation of these quantities?

(c) Evaluate ∂U
∂s and ∂U

∂t in the particular case s = π
4 and t = π

4 .



Several Variables

The Calculus of Functions

of

Section 4.3

Line Integrals

We will motivate the mathematical concept of a line integral through an initial discussion
of the physical concept of work.

Work

If a force of constant magnitude F is acting in the direction of motion of an object along
a line, and the object moves a distance d along this line, then we call the quantity Fd the
work done by the force on the object. More generally, if the vector F represents a constant
force acting on a object as it moves along a displacement vector d, then

F · d

‖d‖ (4.3.1)

is the magnitude of F in the direction of motion (see Figure 4.3.1) and we define

(
F · d

‖d‖

)
‖d‖ = F · d (4.3.2)

to be the work done by F on the object when it is displaced by d.

.

F

F u

d

Figure 4.3.1 Magnitude of F in the direction of d is F · u, where u =
d

‖d‖

We now generalize the formulation of work in (4.3.2) to the situation where an object
P moves along some curve C subject to a force which depends continuously on position
(but does not depend on time). Specifically, we represent the force by a continuous vector
field, say, F : Rn → Rn, and we suppose P moves along a curve C which has a smooth

1 Copyright c© by Dan Sloughter 2001
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F (ϕ(  ))t

D ϕ(  )t

ϕ(  )tP

C

Figure 4.3.2 Object P moving along a curve C subject to a force F

parametrization ϕ : I → Rn, where I = [a, b]. See Figure 4.3.2. To approximate the
work done by F as P moves from ϕ(a) to ϕ(b) along C, we first divide I into m equal
subintervals of length

∆t =
b− a

m

with endpoints t0 = a < t1 < t2 < · · · < tm = b. Now at time tk, k = 0, 1, . . . ,m − 1, P
is moving in the direction of Dϕ(tk) at a speed of ‖Dϕ(tk)‖, and so will move a distance
of approximately ‖Dϕ(tk)‖∆t over the time interval [tk, tk+1]. Thus we may approximate
the work done by F as P moves from ϕ(tk) to ϕ(tk+1) by the work done by the force
F (ϕ(tk)) in moving P along the displacement vector Dϕ(tk)∆t, which is a vector of length
‖Dϕ(tk)‖∆t in the direction of Dϕ(tk). That is, if we let Wk denote the work done by F
as P moves from ϕ(tk) to ϕ(tk−1), then

Wk ≈ F (ϕ(tk)) ·Dϕ(tk)∆t. (4.3.3)

If we let W denote the total work done by F as P moves along C, then we have

W =
m−1∑

k=0

Wk =
m−1∑

k=0

F (ϕ(tk)) ·Dϕ(tk)∆t. (4.3.4)

As m increases, we should expect the approximation in (4.3.4) to approach W . Moreover,
since F (ϕ(t)) ·Dϕ(t) is a continuous function of t and the sum in (4.3.4) is a left-hand rule
approximation for the definite integral of F (ϕ(t)) ·Dϕ(t) over the interval [a, b], we should
have

W = lim
m→∞

m−1∑

k=0

F (ϕ(tk)) ·Dϕ(tk)∆t =
∫ b

a

F (ϕ(t)) ·Dϕ(t)dt. (4.3.5)



Section 4.3 Line Integrals 3

Example Suppose an object moves along the curve C parametrized by ϕ(t) = (t, t2),
−1 ≤ t ≤ 1, subject to the force F (x, y) = (y, x). Then the work done by F as the object
moves from ϕ(−1) = (−1, 1) to ϕ(1) = (1, 1) is

W =

∫ 1

−1

F (ϕ(t)) ·Dϕ(t)dt

=

∫ 1

−1

F (t, t2) · (1, 2t)dt

=

∫ 1

−1

(t2, t) · (1, 2t)dt

=

∫ 1

−1

3t2dt

= t3
∣∣1
−1

= 2.

Example The function ψ(t) =
(

t
2 ,

t2

4

)
, −2 ≤ t ≤ 2, is also a smooth parametrization of

the curve C in the previous example. Using the same force function F , we have

∫ 2

−2

F (ψ(t)) ·Dψ(t)dt =
∫ 2

−2

(
t2

4
,
t

2

)
·
(
1

2
,
t

2

)
dt

=

∫ 2

−2

3t2

8
dt

=
t3

8

∣∣∣∣
2

−2

= 2.

This is the result we should expect: as long as the curve is traversed only once, the work
done by a force when an object moves along the curve should depend only on the curve
and not on any particular parametrization of the curve.

We need to verify the previous statement in general before we can state our definition
of the line integral. Note that in these two examples, ψ(t) = ϕ

(
t
2

)
. In other words,

ψ(t) = ϕ(g(t)), where g(t) = t
2 for −2 ≤ t ≤ 2. In general, if ϕ(t), for t in an interval [a, b],

and ψ(t), for t in an interval [c, d], are both smooth parametrizations of a curve C such
that every point on C corresponds to exactly one point in I and exactly one point in J ,
then there exists a differentiable function g which maps J onto I such that ψ(t) = ϕ(g(t)).
Defining such a g is straightforward: given any t in [c, d], find the unique value s in [a, b]
such that ϕ(s) = ψ(t) (such a value s has to exist since C is the image of both ψ and ϕ).
Then g(t) = s. Proving that g is differentiable is not as easy, and we will not provide a
proof here. However, assuming that g is differentiable, it follows that for any continuous
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vector field F ,

∫ d

c

F (ψ(t)) ·Dψ(t)dt =
∫ d

c

F (ϕ(g(t)) ·D(ϕ ◦ g)(t))dt

=

∫ d

c

F (ϕ(g(t)) ·Dϕ(g(t))g′(t)dt. (4.3.6)

Now if we let
u = g(t),

du = g′(t)dt,

in (4.3.6), then ∫ d

c

F (ψ(t)) ·Dψ(t)dt =
∫ b

a

F (ϕ(u)) ·Dϕ(u)dt (4.3.7)

if g(c) = a and g(d) = b (that is, ϕ(a) = ψ(c) and ϕ(b) = ψ(d), and

∫ d

c

F (ψ(t)) ·Dψ(t)dt =
∫ a

b

F (ϕ(u)) ·Dϕ(u)dt = −
∫ a

b

F (ϕ(u)) ·Dϕ(u)dt (4.3.8)

if g(c) = b and g(d) = a (that is, ϕ(a) = ψ(d) and ϕ(b) = ψ(c). Note that the second case
occurs only if ψ parametrizes C in the reverse direction of ϕ, in which case we say ψ is an
orientation reversing reparametrization of ϕ. In the first case, that is, when ϕ(a) = ψ(c)
and ϕ(b) = ψ(d), we say ψ is an orientation preserving reparametrization of ϕ. Our results
in (4.3.7) and (4.3.8) then correspond to the physical notion that the work done by a force
in moving an object along a curve is the negative of the work done by the force in moving
the object along the curve in the opposite direction. From now on, when referring to a
curve C, we will assume some orientation, or direction, has been specified. We will then
use −C to refer to the curve consisting of the same set of points as C, but with the reverse
orientation.

Line integrals

Now that we know that, except for direction, the value of the integral involved in computing
work does not depend on the particular parametrization of the curve, we may state a formal
mathematical definition.

Definition Suppose C is a curve in Rn with smooth parametrization ϕ : I → Rn, where
I = [a, b] is an interval in R. If F : Rn → Rn is a continuous vector field, then we define
the line integral of F along C, denoted

∫

C

F · ds,

by ∫

C

F · ds =
∫ b

a

F (ϕ(t)) ·Dϕ(t)dt. (4.3.9)
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As a consequence of our previous remarks, we have the following result.

Proposition Using the notation of the definition,
∫

C

F · ds

depends only on the curve C and its orientation, not on the parametrization ϕ. Moreover,
∫

−C

F · ds = −
∫

C

F · ds. (4.3.10)

Example Let C be the unit circle centered at the origin in R2, oriented in the counter-
clockwise direction, and let

F (x, y) =

(
− y

x2 + y2
,

x

x2 + y2

)
=

1

x2 + y2
(−y, x).

To compute the line integral of F along C, we first need to find a smooth parametrization
of C. One such parametrization is

ϕ(t) = (cos(t), sin(t))

for 0 ≤ t ≤ 2π. Then
∫

C

F · ds =
∫ 2π

0

F (cos(t), sin(t)) · (− sin(t), cos(t))dt

=

∫ 2π

0

1

cos2(t) + sin2(t)
(− sin(t), cos(t)) · (− sin(t), cos(t))dt

=

∫ 2π

0

(sin2(t) + cos2(t))dt

=

∫ 2π

0

dt

= 2π.

Note that ψ(t) = (sin(t), cos(t)), 0 ≤ t ≤ 2π, parametrizes−C, from which we can calculate
∫

−C

F · ds =
∫ 2π

0

F (sin(t), cos(t)) · (cos(t),− sin(t))dt

=

∫ 2π

0

1

sin2(t) + cos2(t)
(− cos(t), sin(t)) · (cos(t),− sin(t))dt

=

∫ 2π

0

(− cos2(t)− sin2(t))dt

= −
∫ 2π

0

dt

= −2π,

in agreement with the previous proposition.
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0.5 1 1.5 2 2.5

0.25

0.5

0.75

1

1.25

1.5

C3

C2

C1

C4

Figure 4.3.3 Rectangle with counterclockwise orientation

A piecewise smooth curve is one which may be decomposed into a finite number of
curves, each of which has a smooth parametrization. If C is a piecewise smooth curve
composed of the union of the curves C1, C2, . . . , Cm, then we may extend the definition
of the line integral to C by defining

∫

C

F · ds =
∫

C1

F · ds+
∫

C2

F · ds+ · · ·+
∫

Cm

F · ds. (4.3.11)

The next example illustrates this procedure.

Example Let C be the rectangle in R2 with vertices at (0, 0), (2, 0), (2, 1), and (0, 1),
oriented in the counterclockwise direction, and let F (x, y) = (y2, 2xy). If we let C1, C2,
C3, and C4 be the four sides of C, as labeled in Figure 4.3.3, then we may parametrize C1

by

α(t) = (t, 0),

0 ≤ t ≤ 2, C2 by

β(t) = (2, t),

0 ≤ t ≤ 1, C3 by

γ(t) = (2− t, 1),

0 ≤ t ≤ 2, and C4 by

δ(t) = (0, 1− t),

0 ≤ t ≤ 1. Then

∫

C

F · ds =
∫

C1

F · ds+
∫

C2

F · ds+
∫

C3

F · ds+
∫

C4

F · ds

=

∫ 2

0

F (t, 0) · (1, 0)dt+
∫ 1

0

F (2, t) · (0, 1)dt+
∫ 2

0

F (2− t, 1) · (−1, 0)dt
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+

∫ 1

0

F (0, 1− t) · (0,−1)dt

=

∫ 2

0

(0, 0) · (1, 0)dt+
∫ 1

0

(t2, 4t) · (0, 1)dt+
∫ 2

0

(1, 4− 2t) · (−1, 0)dt

+

∫ 1

0

((1− t)2, 0) · (0,−1)dt

=

∫ 2

0

0dt+

∫ 1

0

4tdt+

∫ 2

0

(−1)dt+

∫ 1

0

0dt

= 2t2
∣∣1
0
− 2

= 2− 2

= 0.

Note that it would be slightly simpler to parametrize −C3 and −C4, using

ϕ(t) = (1, t),

0 ≤ t ≤ 2, and
ψ(t) = (t, 0),

0 ≤ t ≤ 1, respectively, than to parametrize C3 and C4 directly. We would then evaluate

∫

C

F · ds =
∫

C1

F · ds+
∫

C2

F · ds−
∫

−C3

F · ds−
∫

−C4

F · ds.

A note on notation

Suppose C is a smooth curve in Rn, parametrized by ϕ : I → Rn, where I = [a, b], and let
F : Rn → Rn be a continuous vector field. Our notation for the line integral of F along C
comes from letting s = ϕ(t), from which we have

ds

dt
= Dϕ(t),

which we may write, symbolically, as

ds = Dϕ(t)dt.

Now suppose ϕ1, ϕ2, . . . , ϕn and F1, F2, . . . , Fn are the component functions of ϕ and
F , respectively. If we let

x1 = ϕ1(t),

x2 = ϕ2(t),

...

xn = ϕn(t),
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then we may write
∫

C

F · ds =
∫ b

a

F (ϕ(t)) ·Dϕ(t)dt

=

∫ b

a

F (x1(t), x2(t), . . . , xn(t)) · (ϕ′
1(t), ϕ

′
2(t), . . . , ϕ

′
n(t))dt

=

∫ b

a

(F1(x1(t), x2(t), . . . , xn(t))ϕ
′
1(t) + F2(x1(t), x2(t), . . . , xn(t))ϕ

′
2(t)) + · · ·

+ Fn(x1(t), x2(t), . . . , xn(t))ϕ
′
n(t))dt

=

∫ b

a

F1(x1(t), x2(t), . . . , xn(t))ϕ
′
1(t)dt+

∫ b

a

F2(x1(t), x2(t), . . . , xn(t))ϕ
′
2(t)dt

+ · · ·+
∫ b

a

Fn(x1(t), x2(t), . . . , xn(t))ϕ
′
n(t)dt. (4.3.12)

Suppressing the dependence on t, writing dxk for ϕ′
k(t)dt, k = 1, 2, . . . , n, and using only

a single integral sign, we may rewrite (4.3.12) as∫

C

F1(x1, x2, . . . , xn)dx1 + F2(x1, x2, . . . , xn)dx2 + · · ·+ Fn(x1, x2, . . . , xn)dxn. (4.3.13)

This is a common, and useful, notation for a line integral.

Example We will evaluate ∫

C

ydx+ xdy + z2dz,

where C is the part of a helix in R3 with parametric equations

x = cos(t),

y = sin(t),

z = t,

0 ≤ t ≤ 2π. Note that this is equivalent to evaluating∫

C

F · ds,

where F : R3 → R3 is the vector field F (x, y, z) = (y, x, z2). We have
∫

C

ydx+ xdy + z2dz =

∫ 2π

0

(sin(t)(− sin(t)) + cos(t) cos(t) + t2)dt

=

∫ 2π

0

(cos2(t)− sin2(t) + t2)dt

=

∫ 2π

0

(cos(2t) + t2)dt

=
1

2
sin(2t)

∣∣∣∣
2π

0

+
1

3
t3
∣∣∣∣
2π

0

=
8π3

3
.
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Gradient fields

Recall that if f : Rn → R is C1, then ∇f is a continuous vector field on Rn. Suppose
ϕ : I → Rn, I = [a, b], is a smooth parametrization of a curve C. Then, using the chain
rule and the Fundamental Theorem of Calculus,

∫

C

∇f · ds =
∫ b

a

∇f(ϕ(t)) ·Dϕ(t)dt

=

∫ b

a

d

dt
f(ϕ(t))dt

= f(ϕ(t))
∣∣b
a

= f(ϕ(b))− f(ϕ(a)).

Theorem If f : Rn → R is C1 and ϕ : I → Rn, I = [a, b], is a smooth parametrization
of a curve C, then ∫

C

∇f · ds = f(ϕ(b))− f(ϕ(a)). (4.3.14)

Note that (4.3.14) shows that the value of a line integral of a gradient vector field
depends only on the starting and ending points of the curve, not on which particular
path is taken between these two points. Moreover, (4.3.14) provides a simple means for
evaluating a line integral if the given vector field can be identified as the gradient of a scalar
valued function. Another interesting consequence is that if the beginning and ending points
of C are the same, that is, if v = ϕ(a) = ϕ(b), then

∫

C

∇f · ds = f(ϕ(b))− f(ϕ(b)) = f(v)− f(v) = 0. (4.3.15)

We call such curves closed curves. In words, the line integral of a gradient vector field is
0 along any closed curve.

Example If F (x, y) = (y, x), then

F (x, y) = ∇f(x, y),

where f(x, y) = xy. Hence, for example, for any smooth curve C starting at (−1, 1) and
ending at (1, 1) we have

∫

C

F · ds = f(1, 1)− f(−1, 1) = 1 + 1 = 2.

Note that this agrees with the result in our first example above, where C was the part of
the parabola y = x2 extending from (−1, 1) to (1, 1).

Example If f(x, y) = xy2, then

∇f(x, y) = (y2, 2xy).
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If C is the rectangle in R2 with vertices at (0, 0), (2, 0), (2, 1), and (0, 1), then, since C is
a closed curve, ∫

C

y2dx+ 2xydy = 0,

in agreement with an earlier example. Similarly, if E is the unit circle in R2 centered at
the origin, then we know that

∫

E

y2dx+ 2xydy = 0,

with no need for further computations.

In physics, a force field F is said to be conservative if the work done by F in moving
an object between any two points depends only on the points, and not on the path used
between the two points. In particular, we have shown that if F is the gradient of some
scalar function f , then F is a conservative force field. Under certain conditions on the
domain of F , the converse is true as well. That is, under certain conditions, if F is a
conservative force field, then there exists a scalar function f such that F = ∇f . Problem
9 explores one such situation in which this is true. The function f is then known as a
potential function.

Problems

1. For each of the following, compute the line integral

∫

C

F · ds for the given vector field

F and curve C parametrized by ϕ.

(a) F (x, y) = (xy, 3x), ϕ(t) = (t2, t), 0 ≤ t ≤ 2

(b) F (x, y) =

(
y

x2 + y2
,

x

x2 + y2

)
, ϕ(t) = (cos(t), sin(t)), 0 ≤ t ≤ 2π

(c) F (x, y) = (3x− 2y, 4x2y), ϕ(t) = (t3, t2), −2 ≤ t ≤ 2

(d) F (x, y, z) = (xyz, 3xy2, 4z), ϕ(t) = (3t, t2, 4t3), 0 ≤ t ≤ 4

2. Let C be the circle of radius 2 centered at the origin in R2, with counterclockwise
orientation. Evaluate the following line integrals.

(a)

∫

C

3xdx+ 4ydy (b)

∫

C

8xydx+ 4x2dy

3. Let C be the part of a helix in R3 parametrized by ϕ(t) = (cos(2t), sin(2t), t), 0 ≤ t ≤
2π. Evaluate the following line integrals.

(a)

∫

C

3xdx+ 4ydy + zdz (b)

∫

C

yzdx+ xzdy + xydz

4. Let C be the rectangle in R2 with vertices at (−1, 1), (2, 1), (2, 3), and (−1, 3), with
counterclockwise orientation. Evaluate the following line integrals.

(a)

∫

C

x2ydx+ (3y + x)dy (b)

∫

C

2xydx+ x2dy
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5. Let C be the ellipse in R2 with equation

x2

4
+
y2

9
= 1,

with counterclockwise orientation. Evaluate

∫

C

F · ds for F (x, y) = (4y, 3x).

6. Let C be the upper half of the circle of radius 3 centered at the origin in R2, with
counterclockwise orientation. Evaluate the following line integrals.

(a)

∫

C

3ydx (b)

∫

C

4xdy

7. Evaluate ∫

C

x

x2 + y2
dx+

y

x2 + y2
dy,

where C is any curve which starts at (1, 0) and ends at (2, 3).

8. (a) Suppose F : Rn → Rn is a C1 vector field which is the gradient of a scalar function
f : Rn → R. If Fk is the kth coordinate function of F , k = 1, 2, . . . , n, show that

∂

∂xj
Fi(x1, x2, . . . , xn) =

∂

∂xi
Fj(x1, x2, . . . , xn)

for i = 1, 2, . . . , n and j = 1, 2, . . . , n.

(b) Show that although ∫

C

xdx+ xydy = 0

for every circle C in R2 with center at the origin, nevertheless F (x, y) = (x, xy) is
not the gradient of any scalar function f : Rn → R.

(c) Let

F (x, y) =

(
− y

x2 + y2
,

x

x2 + y2

)

for all (x, y) in the set S = {(x, y) : (x, y) 6= (0, 0)}. Let F1 and F2 be the
coordinate functions of F . Show that

∂

∂y
F1(x, y) =

∂

∂x
F2(x, y)

for all (x, y) in S, even though F is not the gradient of any scalar function . (Hint:
For the last part, show that ∫

C

F · ds = 2π,

where C is the unit circle centered at the origin.)
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9. Suppose F : R2 → R2 is a continuous vector field with the property that for any curve
C, ∫

C

F · ds

depends only on the endpoints of C. That is, if C1 and C2 are any two curves with
the same endpoints P and Q, then

∫

C1

F · ds =
∫

C2

F · ds.

(a) Show that ∫

C

F · ds = 0

for any closed curve C.

(b) Let F1 and F2 be the coordinate functions of F . Define f : R2 → R by

f(x, y) =

∫

C

F · ds,

where C is any curve which starts at (0, 0) and ends at (x, y). Show that

∂

∂y
f(x, y) = F2(x, y).

(Hint: In evaluating f(x, y), consider the curve C from (0, 0) to (x, y) which consists
of the horizontal line from (0, 0) to (x, 0) followed by the vertical line from (x, 0)
to (x, y).)

(c) Show that ∇f = F .



Several Variables

The Calculus of Functions

of
Section 4.4

Green’s Theorem

Green’s theorem is an example from a family of theorems which connect line integrals (and
their higher-dimensional analogues) with the definite integrals we studied in Section 3.6.
We will first look at Green’s theorem for rectangles, and then generalize to more complex
curves and regions in R2.

Green’s theorem for rectangles

Suppose F : R2 → R2 is C1 on an open set containing the closed rectangle

D = [a, b]× [c, d],

and let F1 and F2 be the coordinate functions of F . If C denotes the boundary of D,
oriented in the clockwise direction, then we may decompose C into the four curves C1, C2,
C3, and C4 shown in Figure 4.4.1. Then

C1

C2

C3

C4

c

d

ba

Figure 4.4.1 The boundary of a rectangle decomposed into four smooth curves

α(t) = (t, c),

a ≤ t ≤ b, is a smooth parametrization of C1,

β(t) = (b, t),

1 Copyright c© by Dan Sloughter 2001
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c ≤ t ≤ d, is a smooth parametrization of C2,

γ(t) = (t, d),

a ≤ t ≤ b, is a smooth parametrization of −C3, and

δ(t) = (a, t),

c ≤ t ≤ d, is a smooth parametrization of −C4. Now

∫

C

F · ds =
∫

C1

F · ds+
∫

C2

F · ds+
∫

C3

F · ds+
∫

C4

F · ds

=

∫

C1

F · ds+
∫

C2

F · ds−
∫

−C3

F · ds−
∫

−C4

F · ds, (4.4.1)

and ∫

C1

F · ds =
∫ b

a

((F1(t, c), F2(t, c)) · (1, 0)dt =
∫ b

a

F1(t, c)dt, (4.4.2)

∫

C2

F · ds =
∫ d

c

((F1(b, t), F2(b, t)) · (0, 1)dt =
∫ c

c

F2(b, t)dt, (4.4.3)

∫

−C3

F · ds =
∫ b

a

((F1(t, d), F2(t, d)) · (1, 0)dt =
∫ b

a

F1(t, d)dt, (4.4.4)

and ∫

−C4

F · ds =
∫ d

c

((F1(a, t), F2(a, t)) · (0, 1)dt =
∫ c

c

F2(a, t)dt, (4.4.5)

Hence, inserting (4.4.2) through (4.4.5) into (4.4.1),

∫

C

F · ds =
∫ b

a

F1(t, c)dt+

∫ d

c

F2(b, t)dt−
∫ b

a

F1(t, d)dt−
∫ d

c

F2(a, t)dt

=

∫ d

c

(F2(b, t)− F2(a, t))dt−
∫ b

a

(F1(t, d)− F1(t, c))dt. (4.4.6)

Now, by the Fundamental Theorem of Calculus, for a fixed value of t,

∫ b

a

∂

∂x
F2(x, t)dx = F2(b, t)− F2(a, t) (4.4.7)

and ∫ d

c

∂

∂y
F1(t, y)dy = F1(t, d)− F1(t, c). (4.4.8)
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Thus, combining (4.4.7) and (4.4.8) with (4.4.6), we have

∫

C

F · ds =
∫ d

c

∫ b

a

∂

∂x
F2(x, t)dxdt−

∫ b

a

∫ d

c

∂

∂y
F1(t, y)dydt

=

∫ d

c

∫ b

a

∂

∂x
F2(x, y)dxdy −

∫ b

a

∫ d

c

∂

∂y
F1(x, y)dydx

=

∫ d

c

∫ b

a

(
∂

∂x
F2(x, y)−

∂

∂y
F1(x, y)

)
dxdy. (4.4.9)

If we let p = F1(x, y), q = F2(x, y), and ∂D = C (a common notation for the boundary of
D), then we may rewrite (4.4.9) as

∫

∂D

pdx+ qdy =

∫ ∫

D

(
∂q

∂x
− ∂p

∂y

)
dxdy. (4.4.10)

This is Green’s theorem for a rectangle.

Example If D = [1, 3]× [2, 5], then

∫

∂D

xydx+ xdy =

∫ ∫

D

(
∂

∂x
x− ∂

∂y
xy

)
dxdy

=

∫ 3

1

∫ 5

2

(1− x)dydx

=

∫ 3

1

3(1− x)dx

= 3x
∣∣3
1
− 3

2
x2
∣∣∣
3

1

= −6.

Clearly, this is simpler than evaluating the line integral directly.

Green’s theorem for regions of Type III

Green’s theorem holds for more general regions than rectangles. We will confine ourselves
here to discussing regions known as regions of Type III, but it is not hard to generalize to
regions which may be subdivided into regions of this type (for an example, see Problem
12). Recall from Section 3.6 that we say a region D in R2 is of Type I if there exist real
numbers a < b and continuous functions α : R → R and β : R → R such that

D = {(x, y) : a ≤ x ≤ b, α(x) ≤ y ≤ β(x)}. (4.4.11)

We say a region D in R2 is of Type II if there exist real numbers c and d and continuous
functions γ : R → R and δ : R → R such that

D = {(x, y) : c ≤ y ≤ d, γ(y) ≤ x ≤ δ(y)}. (4.4.12)
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C1

C2

C3

C4

ba

D

Figure 4.4.2 Decomposing the boundary of a region of Type I

Definition We call a region D in R2 which is both of Type I and of Type II a region of
Type III.

Example In Section 3.6, we saw that the triangle T with vertices at (0, 0), (1, 0), and
(1, 1) and the closed disk

D = B̄2((0, 0), 1) = {(x, y) : x2 + y2 ≤ 1}

are of both Type I and Type II. Thus T and D are regions of Type III. We also saw that
the region E beneath the graph of y = x2 and above the interval [−1, 1] is of Type I, but
not of Type II. Hence E is not of Type III.

Example Any closed rectangle in R2 is a region of Type III, as is any closed region
bounded by an ellipse.

Now suppose D is a region of Type III and ∂D is the boundary of D, that is, the
curve enclosing D, oriented counterclockwise. Let F : R2 → R2 be a C1 vector field, with
coordinate functions p = F1(x, y) and q = F2(x, y). We will first prove that

∫

∂D

pdx = −
∫ ∫

D

∂p

∂y
dxdy. (4.4.13)

Since D is, in particular, a region of Type I, there exist continuous functions α and β such
that

D = {(x, y) : a ≤ x ≤ b, α(x) ≤ y ≤ β(x)}. (4.4.14)

In addition, we will assume that α and β are both differentiable (without this assumption
the line integral of F along ∂D would not be defined). As with the rectangle in the previous
proof, we may decompose ∂D into four curves, C1, C2, C3, and C4, as shown in Figure
4.4.2. Then

ϕ1(t) = (t, α(t)),
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a ≤ t ≤ b, is a smooth parametrization of C1,

ϕ2(t) = (b, t),

α(b) ≤ t ≤ β(b), is a smooth parametrization of C2,

ϕ3(t) = (t, β(t)),

a ≤ t ≤ b, is a smooth parametrization of −C3, and

ϕ4(t) = (a, t),

α(a) ≤ t ≤ β(a), is a smooth parametrization of −C4. Now
∫

∂D

pdx =

∫

C1

pdx+

∫

C2

pdx−
∫

−C3

pdx−
∫

−C4

pdx, (4.4.15)

where ∫

C1

pdx =

∫ b

a

(F1(t, α(t)), 0) · (1, α′(t))dt =
∫ b

a

F1(t, α(t))dt, (4.4.16)

∫

C2

pdx =

∫ β(b)

α(b)

(F1(b, t), 0) · (0, 1)dt =
∫ β(b)

α(b)

0dt = 0, (4.4.17)

∫

−C3

pdx =

∫ b

a

(F1(t, β(t)), 0) · (1, β′(t))dt =
∫ b

a

F1(t, β(t))dt, (4.4.18)

and ∫

−C4

pdx =

∫ β(a)

α(a)

(F1(a, t), 0) · (0, 1)dt =
∫ β(a)

α(a)

0dt = 0. (4.4.19)

Hence
∫

∂D

pdx =

∫ b

a

F1(t, α(t))dt−
∫ b

a

F1(t, β(t))dt

= −
∫ b

a

(F1(t, β(t))− F1(t, α(t)))dt. (4.4.20)

Now, by the Fundamental Theorem of Calculus,

∫ β(t)

α(t)

∂

∂y
F1(t, y)dy = F1(t, β(t))− F1(t, α(t)), (4.4.21)

and so
∫

∂D

pdx = −
∫ b

a

∫ β(t)

α(t)

∂

∂y
F1(t, y)dydt

= −
∫ b

a

∫ β(x)

α(x)

∂

∂y
F1(x, y)dydx

= −
∫ ∫

D

∂p

∂y
dxdy. (4.4.22)
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A similar calculation, treating D as a region of Type II, shows that

∫

∂D

qdy =

∫ ∫

D

∂q

∂x
dxdy. (4.4.23)

(You are asked to verify this in Problem 7.) Putting (4.4.22) and (4.4.23) together, we
have

∫

∂D

F · ds =
∫

∂D

pdx+ qdy = −
∫ ∫

D

∂p

∂y
dxdy +

∫ ∫

D

∂q

∂x
dxdy

=

∫ ∫

D

(
∂q

∂x
− ∂p

∂y

)
dxdy. (4.4.24)

Green’s Theorem Suppose D is a region of Type III, ∂D is the boundary of D with
counterclockwise orientation, and the curves describing ∂D are differentiable. Let F :
R2 → R2 be a C1 vector field, with coordinate functions p = F1(x, y) and q = F2(x, y).
Then ∫

∂D

pdx+ qdy =

∫ ∫

D

(
∂q

∂x
− ∂p

∂y

)
dxdy. (4.4.25)

Example Let D be the region bounded by the triangle with vertices at (0, 0), (2, 0), and
(0, 3), as shown in Figure 4.4.3. If we orient ∂D in the counterclockwise direction, then

∫

∂D

(3x2 + y)dx+ 5xdy =

∫ ∫

D

(
∂

∂x
(5x)− ∂

∂y
(3x2 + y)

)
dxdy

=

∫ ∫

D

(5− 1)dxdy

= 4

∫ ∫

D

dxdy

= (4)(3)

= 12,

where we have used the fact that the area of D is 3 to evaluate the double integral.

The line integral in the previous example reduced to finding the area of the region
D. This can be exploited in the reverse direction to compute the area of a region. For
example, given a region D with area A and boundary ∂D, it follows from Green’s theorem
that

A =

∫ ∫

D

dxdy =

∫

∂D

pdx+ qdy (4.4.26)

for any choice of p and q which have the property that

∂q

∂x
− ∂p

∂y
= 1. (4.4.27)
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0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

3

Figure 4.4.3 A triangle with counterclockwise orientation

For example, letting p = 0 and q = x, we have

A =

∫

∂D

xdy (4.4.28)

and, letting p = −y and q = 0, we have

A = −
∫

∂D

ydx. (4.4.29)

The next example illustrates using the average of (4.4.28) and (4.4.29) to find A:

A =
1

2

(∫

∂D

xdy −
∫

∂D

ydx

)
=

1

2

∫

∂D

xdy − ydx. (4.4.30)

Example Let A be the area of the region D bounded by the ellipse with equation

x2

a2
+
y2

b2
= 1,

where a > 0 and b > 0, as shown in Figure 4.4.4. Since we may parametrize ∂D, with
counterclockwise orientation, by

ϕ(t) = (a cos(t), b sin(t)),



8 Green’s Theorem Section 4.4

a

b

−a

−b

Figure 4.4.4 The ellipse
x2

a2
+
y2

b2
= 1 with counterclockwise orientation

0 ≤ t ≤ 2π, we have

A =
1

2

∫

∂D

xdy − ydx

=
1

2

∫ 2π

0

(−b sin(t), a cos(t)) · (−a sin(t), b cos(t)dt

=
1

2

∫ 2π

0

(ab sin2(t) + ab cos2(t))dt

=
ab

2

∫ 2π

0

dt

=

(
ab

2

)
(2π)

= πab.

Problems

1. Let D be the closed rectangle in R2 with vertices at (0, 0), (2, 0), (2, 4), and (0, 4),
with boundary ∂D oriented counterclockwise. Use Green’s theorem to evaluate the
following line integrals.

(a)

∫

∂D

2xydx+ 3x2dy (b)

∫

∂D

ydx+ xdy

2. Let D be the triangle in R2 with vertices at (0, 0), (2, 0), and (0, 4), with boundary ∂D
oriented counterclockwise. Use Green’s theorem to evaluate the following line integrals.

(a)

∫

∂D

2xy2dx+ 4xdy (b)

∫

∂D

ydx+ xdy

(c)

∫

∂D

ydx− xdy
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3. Use Green’s theorem to find the area of a circle of radius r.

4. Use Green’s theorem to find the area of the region D enclosed by the hypocycloid

x
2
3 + y

2
3 = a

2
3 ,

where a > 0. Note that we may parametrize this curve using

ϕ(t) = (a cos3(t), a sin3(t)),

0 ≤ t ≤ 2π.

5. Use Green’s theorem to find the area of the region enclosed by one “petal” of the curve
parametrized by

ϕ(t) = (sin(2t) cos(t), sin(2t) sin(t)).

6. Find the area of the region enclosed by the cardioid parametrized by

ϕ(t) = ((2 + cos(t)) cos(t), (2 + cos(t)) sin(t)),

0 ≤ t ≤ 2π.

7. Verify (4.4.23), thus completing the proof of Green’s theorem.

8. Suppose the vector field F : R2 → R2 with coordinate functions p = F1(x, y) and
q = F2(x, y) is C

1 on an open set containing the Type III region D. Moreover, suppose
F is the gradient of a scalar function f : R2 → R.
(a) Show that

∂q

∂x
− ∂p

∂y
= 0

for all points (x, y) in D.

(b) Use Green’s theorem to show that
∫

∂D

pdx+ qdy = 0,

where ∂D is the boundary of D with counterclockwise orientation.

9. How many ways do you know to calculate the area of a circle?

10. Who was George Green?

11. Explain how Green’s theorem is a generalization of the Fundamental Theorem of In-
tegral Calculus.

12. Let b > a, let C1 be the circle of radius b centered at the origin, and let C2 be the
circle of radius a centered at the origin. If D is the annular region between C1 and
C2 and F is a C1 vector field with coordinate functions p = F1(x, y) and q = F2(x, y),
show that ∫ ∫

D

(
∂q

∂x
− ∂p

∂y

)
dxdy =

∫

C1

pdx+ qdy +

∫

C2

pdx+ qdy,

where C1 is oriented in the counterclockwise direction and C2 is oriented in the clock-
wise direction. (Hint: Decompose D into Type III regions D1, D2, D3, and D4, each
with boundary oriented counterclockwise, as shown in Figure 4.4.5.)
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D2

D4D3

D1

ba

b

a

Figure 4.4.5 Decomposition of an annulus into regions of Type III


