Section 3.7

Change of Variables in Integrals

One of the basic techniques for evaluating an integral in one-variable calculus is substitu-
tion, replacing one variable with another in such a way that the resulting integral is of a
simpler form. Although slightly more subtle in the case of two or more variables, a similar
idea provides a powerful technique for evaluating definite integrals.

Linear change of variables

We will present the main idea through an example. Let
D = {(z,y) : 92 + 4y? < 36},

the region inside the ellipse which intersects the z-axis at (—2,0) and (2,0) and the y-axis
at (0,—3) and (0,3). To find the area of D, we evaluate

2 V422 2
// d:vdy:/ / dydxz/ 3vV4 — 22 dr = 6m,
D —2J- 2

3. /4_12 _
sVi—x

where the final integral may be evaluated using the substitution x = 2sin(#) or by noting

that )
/ V4 — 22 dx
—2

is one-half of the area of a circle of radius 2. Alternatively, suppose we write the equation
of the ellipse as

22 2
T2
4 * 9
and make the substitution x = 2u and y = 3v. Then v = J and v = £, so if (x,y) is a
point in D, then
2 2
2 2 _ 7T Y
=—+ =<1
u” 4 v 1 + g =

That is, if (x,y) is a point in D, then (u,v) is a point in the unit disk
E = {(u,v) :u* +0v* <1}

Conversely, if (u,v) is a point in FE, then
2 2 4w 92
xZ %:L+i=u2+v2s1,

* 4 9

1 Copyright (c) by Dan Sloughter 2001
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F

Figure 3.7.1 F maps E onto D

so (z,y) is a point in D. Thus the function F(u,v) = (2u,3v) takes the region E, a
closed disk of radius 1, and stretches it onto the region D (as shown in Figure 3.7.1).
However, note that even though every point in E corresponds to exactly one point in D,
and, conversely, every point in D corresponds to exactly on point in F, nevertheless F and
D do not have the same area. To see how F' changes area, consider what it does to the
unit square S with sides e; = (1,0) and e; = (0,1). The area of S is 1, but F maps S
onto a rectangle R with sides
F(1,0) = (2,0)

and
F(0,1) =(0,3)

and area 6. This a special case of a general fact we saw in Section 1.6: the linear function
F', with associated matrix
2 0
M =
3]

maps the unit square S onto a parallelogram R with area
| det(M)| = 6.

The important fact for us here is that 1 unit of area in the uv-plane corresponds to 6 units
of area in the xy-plane. Hence the area of D will be 6 times the area of E. That is,

//Ddxdy://E|det(M)|dudv://EGdudv=6//Edudv:67r,

where the final integral is simply the area inside a circle of radius 1.
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Figure 3.7.2 The ellipsoid % + Y% + 2 =1

These ideas provide the background for a proof of the following theorem.

Theorem Suppose f : R" — R is continuous on a an open set U containing the closed
bounded set D. Suppose F' : R™ — R" is a linear function, M is an n X n matrix such that

F(u) = Mu, and det(M) # 0. If F maps the region E onto the region D and we define
the change of variables

I U1

T2 U2
=M )

Tn Un

then

/// f(x17x27'"7xn)d$1dx2"'dwn
D

(3.7.1)
[ [ [ P w) et dundus - du,
E
Example Let D be the region in R? bounded by the ellipsoid with equation
2?2 2 22
4 2
F 169
See Figure 3.7.2. If we make the change of variables x = 2u, y = 4v, and z = 3w, that is,
2 0 0 U

INEENSIR

=10 4 0 v |,
0 0 3| |w



4 Change of Variables in Integrals Section 3.7

then, for any (z,y,2) in D, we have

2 2+Z2
9

2 2 2 T
u” +wv +w—4+1

<

<1

(=)

That is, if (x,y, z) lies in D, then the corresponding (u,v,w) lies in the closed unit ball
E = B3((0,0,0),1). Conversely, if (u,v,w) lies in F, then

x2+y2+22 4112_*_161)2_'_9102 2 24w <1
S AT — =u’+v°+w
4 16 9 4 16 9 -

so (x,y, z) lies in D. Hence, the change of variables F'(u,v,w) = (2u,4v,3w) maps E onto
D. Now

so if V' is the volume of D, then

V:/// dmdydz:///24dudvdw:24///dudvdw:24 (4—7T) = 32,
D E E 3

where we have used the fact that the volume of a sphere of radius 1 is %’r to evaluate the
final integral.

Nonlinear change of variables

Without going into the technical details, we will indicate how to proceed when the change
of variables is not linear. Suppose f : R — R is continuous on a an open set U containing
the closed bounded set D and F : R" — R" maps a closed bounded region E of R"
onto D so that every point of D corresponds to exactly one point of E. Writing F(u) =
(Fi(u), Fy(u),. .., F,(u)), we will assume that Fy, Fs, ..., and F,, are all differentiable
on an open set W containing E. Although we will not study this type of function until
Chapter 4, the natural candidate for the derivative of F' is the matrix whose ¢th row is
VF;(u). Letting z; = F;(uy,ug,...,uy,), i = 1,2,...,n, we denote this matrix, called the
Jacobian matriz of F,

0(x1,22,...,2n)
O(ur,ug,y ... Up) (3.7.2)
Explicitly,
- a a 8 i
@Fﬂu) @ﬂ(u) @mu)
Owr, s, wn) _ | goFo(w) 5oFa(w) - S Fa(u) (3.7.3)
Our, ;. un) . 7
0 o P
_a_ul n(u) 8_’&2 n(u) a—un n(u)_
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Figure 3.7.3 Polar and Cartesian coordinates for a point P

We shall see in Chapter 4 that

O(x1,T2,...,Ty)
8(u1, U2,y ... ,un)
is the matrix for the linear part of the best affine approximation to F' at (uq,ug,. .., U,).

Hence, for sufficiently small rectangles, the factor by which F' changes the area of a rect-
angle when it maps it to a region will be approximately

det Oy, 23, Tn) : (3.7.4)
a(ul, U2, ... ,un)
One may then show that, analogous to (3.7.1), we have
/// f(xy,z0,. .. zp)derday - - - dy,
b (3.7.5)

duidusg - - - du,,.

. O(x1,x9,...,2y)
_/...//Ef(F(ubuz,...,un))‘deta(m’um.“,un)

Note that (3.7.5) is just (3.7.1) with the matrix M replaced by the Jacobian of F'.
We will now look at two very useful special cases of the preceding result. See Problems
22 and 23 for a third special case.

Polar coordinates

As an alternative to describing the location of a point P in the plane using its Cartesian
coordinates (x,y), we may locate the point using r, the distance from P to the origin, and
0, the angle between the vector from (0,0) to P and the positive z-axis, measured in the
counterclockwise direction from 0 to 27 (see Figure 3.7.3). That is, if P has Cartesian
coordinates (z,y), with  # 0, we may define its polar coordinates (r,0) by specifying that

r=z2+y> (3.7.6)
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and
tan(g) = 2, (3.7.7)

T

where we take 0 < 0 < 7mify >0and 7 <0 <2mify < 0. If z =0, we let § = 7 if
y>0and 0 =3 if y <0. For (z,y) = (0,0), r = 0 and 0 could have any value, and so is
undefined. Conversely, if a point P has polar coordinates (r,6), then

x = rcos(0) (3.7.8)

and
y = rsin(6). (3.7.9)

Note that the choice of the interval [0,27) for the values of 6 is not unique, with any
interval of length 27 working as well. Although [0,27) is the most common choice for
values of 6, it is sometimes useful to use (—m, 7) instead.

Example If a point P has Cartesian coordinates (—1, 1), then its polar coordinates are
3
(V2, %)
Example A point with polar coordinates (3, %) has Cartesian coordinates (%g, %)
In our current context, we want to think of the polar coordinate mapping

(x,y) = F(r,0) = (rcos(9),rsin(0)) (3.7.10)

as a change of variables between the rf-plane and the xy-plane. This mapping is particu-
larly useful for us because it maps rectangular regions in the rf-plane onto circular regions
in the zy-plane. For example, for any a > 0, F' maps the rectangular region

E={(r0):0<r<a,0<6<2r}
in the rf-plane onto the closed disk
D = B*((0,0),a) = {(w,y) : 2* + 3 < a}

in the zy-plane (see Figure 3.7.5 below for an example). More generally, for any 0 < a <
B < 2w, F maps the rectangular region

E={(r0):0<r<aa<0<p}

in the rf-plane onto a region D in the zy-plane which is the sector of the closed disk
B?((0,0),a) which lies between radii of angles o and 3 (see Figure 3.7.4). Another basic
example is an annulus: for any 0 < a < b, F' maps the rectangular region

E={(r0):a<r<b,0<60<2rm}
in the rf-plane onto the annulus
D= {(z,y):a <2’ +y* <b}

in the zy-plane. Figure 3.7.6 illustrates this mapping for the upper half of an annulus.
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F

Figure 3.7.4 Polar coordinate change of variables

Example Let V be the volume of the region which lies beneath the paraboloid with
equation z = 4 — 22 — 32 and above the zy-plane. In Section 3.6, we saw that

V://(4—ac2—y2)dxdy:87r,
D

D = {(z,y) : 2% +y* < 4}.

where

The use of polar coordinates greatly simplifies the evaluation of this integral. With the
polar coordinate change of variables

x = rcos(h)
and
y = rsin(0),

the closed disk D in the zy-plane corresponds to the closed rectangle
E={(r0):0<r<20<6<2r}

in the rf-plane (see Figure 3.7.5). Note that in describing E we have allowed 6§ = 2,
but this has no affect on our outcome since a line has no area in R%. Moreover, if we let
f(z,y) =4 — 2% —y?, then

f(E(r,0)) = f(rcos(0),rsin(d))
=4 —r?cos?(0) — r?sin(6)
=4 — r?(cos*(f) + sin?(9)

=4 —r?
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Figure 3.7.5 Polar coordinate change of variables maps [0,2] x [0, 27] to B2((0,0),2)

which also follows from the fact that r? = 22 + y?. Now

0 0
8((x,y)) _ @_gTCOS(Q) 8—grcos(9) _ coség)) —rsinig)) (3.7.11)
o(r, 0 9 i 9 i sin T COS ’ o
U T
" 2.y) ) 220
det 2r0) rcos?(0) + rsin?(6) = r(cos?(0) + sin?(9)) = r. (3.7.12)

Hence, using (3.7.5), we have
) |det oz, )‘d de

[ [t itiwar= [ [ janGo
:/0 /O2ﬂ(4—r2)rd9dr

2
:/ 2m(4r — r®)dr

0

7,4
=21 (2r? — —
“(-1)

= 27(8 — 4)

= 8.

2

0

Example Suppose D is the part of the region between the circles with equations z2+y? =
1 and 22 + 3% = 9 which lies above the z-axis. That is,

D={(z,y):1<2*>+y*> <9,z >0}.
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Figure 3.7.6 Polar coordinates map [1,3] x [0, 7] to top half of an annulus

/ / e_(‘r2+y2)dxdy.
D

Under the polar coordinate change of variables

We wish to evaluate

x =71 cos(0)

and
y = rsin(0),

the annular region D corresponds to the closed rectangle
E={(r0):1<r<3,0<6<m},

as illustrated in Figure 3.7.6. Moreover, 22 4+ y? = r? and, as we saw in the previous

example,
8(%?;)‘ _

a(r,0)

2 2 2
// e~ (@t )dacdy:// re” " drdf
D E
3 ™ 5
:/ / re” " dfdr
1 Jo
3
2
:/ mre” " dr
1

’ det

Hence

Note that in this case the change of variables not only simplified the region of integra-
tion, but also put the function being integrated into a form to which we could apply the
Fundamental Theorem of Calculus.
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Figure 3.7.7 Spherical and Cartesian coordinates for a point P

Spherical coordinates

Next consider the following extension of polar coordinates to three space: given a point
P with Cartesian coordinates (z,vy,z), let p be the distance from P to the origin, 6 be
the angle coordinate for the polar coordinates of (z,y,0) (the projection of P onto the
xy-plane), and let ¢ be the angle between the vector from the origin to P and the positive
z-axis, measured from 0 to 7. If x # 0, we have

p =2 +y?+ 22 (3.7.13)

tan(f) = 2, (3.7.14)

T

and
z

cos(p) = s =

where 0 < 6 < 27 and 0 < ¢ < 7. As with polar coordinates, if z = 0 we let § = 7 if
y>0, 0= 377’ if y < 0, and @ is undefined if y = 0. See Figure 3.7.7. Conversely, given
a point P with spherical coordinates (p, 6, ), the projection of P onto the zy-plane will
have polar coordinate r = psin(y). Hence the Cartesian coordinates of P are

(3.7.15)

x = pcos(f)sin(yp), (3.7.16)
y = psin(0) sin(p), (3.7.17)

and
z = pcos(p). (3.7.18)

Example If a point P has Cartesian coordinates (2, —2, 1), then its spherical coordinates

satisfy
p=V4d+4+1=23,
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-2
tan(g) = 7 = —]_7

and

Hence we have

and )
@ =cos ! (§> = 1.2310,

where we have rounded the value of ¢ to four decimal places. Hence P has spherical

: yéis
coordinates (3, o 1.2310).

Example If a point P has spherical coordinates (4,

are z = 4 cos (g) sin (%) _ % (_2) _ V3.
=G () =0 (3) () -
and

z = 4cos <?%) =4 <—%) = —2V2.

Analogous to our work with polar coordinates, we think of the spherical coordinate
mapping

(@,y,2) = F(p,0,¢) = (pcos(0) sin(p), psin(f) sin(y), p cos(¢)) (3.7.19)

as a change of variables between pfp-space and xyz-space. This mapping is particularly
useful for evaluating triple integrals because it maps rectangular regions in pfp-space onto
spherical regions in xyz-space. For the most basic example, for any a > 0, F' maps the
rectangular region

E={(p,0,0):0<p<a,0<0<2r,0<¢p<m}
in pfy-space onto the closed ball
D = B3((0,0,0),a) = {(z,y,2) : 2° + y* 4+ 22 < a}

in xyz-space. More generally, for any 0 < a <b, 0 <a<f<2m,and 0 <y <é <7, F
maps the rectangular region

E={(p0,p):a<p<ba<t<py<p<i}
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onto a region D in zyz-space which lies between the concentric spheres S2((0,0,0),

Section 3.7

a) and

52((0,0,0),b), and for which the angle  lies between o and 3 and the angle ¢ between ~y

and 0. For example, if a =0, 6 =7, vy=0, and § =

%, then D is one-half of

lying between two concentric hemispheres with radii @ and b.
Before using the spherical coordinate change of variable in (3.7.19) to evaluate an
integral using (3.7.5), we need to compute the determinate of the Jacobian of F. Now

[ pcos(@)sin) gpcos(6)sini) 5 peos(6)sin(y)
oy = | Tpsin@)sinG) psn@)sin) 5 psin®)sin(y)
_ %pcos(gp) %pcos(gp) %pcos(so)
cos(8)sin(g)  —psin(8)sin(g)  pcos(d) cos(s)
= | sin(0) sin(p)  pcos(0)sin(p)  psin(f) cos(p) | ,
L cos(p) 0 —psin(p)

so, expanding along the third row,

) = cos(¢)(—p? sin?(0) sin(¢p) cos(p)

— p* cos?(0) sin(y) cos())

— psin(p)(pcos?(0) sin(p) + psin?(6) sin? ()

0s ( )
) — p°sin’ ()
(6082(90) +sin®(p))

Example

(sin? ( ) + cos?(6))

is ? In this example we will verify that the volume of a sphere of radius a is

V be the volume of

D = B*((0,0,0),a),

the closed ball of radius a centered at the origin in R®. Then

V:///Dd:cdydz.

the region

(3.7.20)

— p?sin®(¢)(sin? () + cos*(9))

(3.7.21)

(3.7.22)

In an earlier example we used the fact that the volume of a sphere of radius 1

§7Ta3. Let
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Although we may evaluate this integral using Cartesian coordinates, we will find it sig-

nificantly easier to use spherical coordinates. Using the spherical coordinate change of
variables

x = pcos(6) sin(p),
y = psin(0) sin(p),

and
z = pcos(yp),

the region D in xyz-space corresponds to the region
E={(p,0,p):0<p<a,0<0<2m,0< <7}

in pfp-space. Using (3.7.22) in the change of variables formula (3.7.5), we have
= / / / dxdydz
/// det g'dpdego
27
:/ / / p? sin(p)dpdfdp
27
/ / —p? cos( )’ dfdp
27
/ / _1—1))d0dp
27
—2/1/ p2dfdp
=47 / p2dp
0

_47r3
T3

Example Suppose we wish to evaluate
/// log \/ 22 + y? + 22 dxdydz,
D

where D is the region in R® which lies between the two spheres with equations z2+y2%+22 =
1 and 22 + y? + 22 = 4 and above the zy-plane. Under the spherical coordinate change of
variables

x = pcos(f)sin(y),
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y = psin(6) sin(y),

and
2 = peos(),

the region D in xyz-space corresponds to the region

3

E:{(p,e,go):1§p§2,0§9§277,0§g0§5}

in pfp-space. Using (3.7.22) in the change of variables formula (3.7.5), we have
///log\/x2+y + 22 dacdydz—///logp ‘ ;‘ddedgo

27

5// /;ﬂ%mmwwwwp
27

// —p?log(p) cos(ip |O dbdp

27

(—p*log(p))(0 — 1)dbdp

2m

p*log(p)dfdp

H\MH\
o— 5— 3

2m | p?log(p)dp.

-

We use integration by parts to evaluate this final integral: letting

=lo

g(p) dv=p*dp

1 3
du = —

p

_r
v = 3

we have

1 2
/// log /22 4+ y? + 22 dedydz = 27 <§p3 log(p)
D 1

16 213 |?
= —rlog(2

5 Tlog(2) — —5 1
16 14
= 5 los(®) g
27T

3 (8 log(2) — ;) .
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Problems

1.
2.

Find the area of the region enclosed by the ellipse with equation z? + 4y? = 4.
Given a > 0 and b > 0, show that the area enclosed by the ellipse with equation

is wab.

Find the volume of the region enclosed by the ellipsoid with equation
2 2

x 5  Z
r .
95 7Y T

Given a > 0, b > 0, and ¢ > 0, show that the volume of the region enclosed by the
ellipsoid

is %Wabc.

Find the polar coordinates for each of the following points given in Cartesian coordi-
nates.

(a) (1,1) (b) (=2,3)
(c) (=1,3) (d) (4,—4)

Find the Cartesian coordinates for each of the following points given in polar coordi-
nates.

(a) (3,0) o) (25)

6
(©) (5.7 @ (4.5)
Evaluate

//D(:c2+y2)da:dy,

where D is the disk in R? of radius 2 centered at the origin.

// sin(z? + y?)dady,
D

where D is the disk in R? of radius 1 centered at the origin.

1
| fyp

where D is the region in the first quadrant of R? which lies between the circle with
equation z2 + y? = 1 and the circle with equation 22 + y? = 16.

Evaluate

Evaluate
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10.

11.
12.

13.
14.
15.
16.
17.

18.

19.

Change of Variables in Integrals Section 3.7

// log(z? + y*)dxdy,
D

where D is the region in R? which lies between the circle with equation 22 4+ y2 = 1
and the circle with equation z? + y? = 4.

Evaluate

Using polar coordinates, verify that the area of a circle of radius r is 7r2.

o0 22
I:/ e 2z dx.
:/OO /00 efé(””%ryz)dacdy.
') 27 2
:/ / re” z dOdr.
0 0

/ e_édx = /2.

— 00

Let

(a) Show that

(b) Show that

(c) Show that

Find the spherical coordinates of the point with Cartesian coordinates (—1,1,2).
Find the spherical coordinates of the point with Cartesian coordinates (3,2, —1).
Find the Cartesian coordinates of the point with spherical coordinates (2 3%, ?”)
Find the Cartesian coordinates of the point with spherical coordinates (5 ?” %)

Evaluate

///(332 + 32 + 2?)dzdydz,

where D is the closed ball in R? of radius 2 centered at the origin.

Evaluate

dxdydz,

) =

where D is the region in R® between the two spheres with equations z2 4+ y2 + 22 = 4

and 22 + 92 + 22 = 9.
/// sin(y/x? + y2 + 22 )dxdydz,
D

where D is the region in R® described by 2 > 0, y > 0, z > 0, and 22 + ¢ 4+ 22 < 1.

Evaluate
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20.

21.

22.

23.

24.

25.

Evaluate

/// e_(x2+y2+22)dxdydz,
D

where D is the closed ball in R® of radius 3 centered at the origin.

Let D be the region in R® described by z2 + 32 + 22 < 1 and z > 1/z2 + ¢2.

(a) Explain why the spherical coordinate change of variables maps the region
Ez{(p,@,(p):0§p§1,0§9§277,0§(,0§%}

onto D.
(b) Find the volume of D.

If a point P has Cartesian coordinates (z,y, z), then the cylindrical coordinates of P
are (1,0, z), where r and 6 are the polar coordinates of (x,y). Show that

o(x,y, 2)

e 5.0, 2)

Use cylindrical coordinates to evaluate

// V2 + y2dxdydz,
D

where D is the region in R? described by 1 <z?2+4+y?<4and0<z<H5.

A drill with a bit with a radius of 1 centimeter is used to drill a hole through the center
of a solid ball of radius 3 centimeters. What is the volume of the remaining solid?

Let D be the set of all points in the intersection of the two solid cylinders in R?
described by x2 4+ y? < 1 and 22 4 22 < 1. Find the volume of D.



