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Section 3.7

Change of Variables in Integrals

One of the basic techniques for evaluating an integral in one-variable calculus is substitu-
tion, replacing one variable with another in such a way that the resulting integral is of a
simpler form. Although slightly more subtle in the case of two or more variables, a similar
idea provides a powerful technique for evaluating definite integrals.

Linear change of variables
We will present the main idea through an example. Let

D = {(x, y) : 9x2 + 4y2 ≤ 36},

the region inside the ellipse which intersects the x-axis at (−2, 0) and (2, 0) and the y-axis
at (0,−3) and (0, 3). To find the area of D, we evaluate∫ ∫

D

dxdy =
∫ 2

−2

∫ 3
2

√
4−x2

− 3
2

√
4−x2

dydx =
∫ 2

−2

3
√

4− x2 dx = 6π,

where the final integral may be evaluated using the substitution x = 2 sin(θ) or by noting
that ∫ 2

−2

√
4− x2 dx

is one-half of the area of a circle of radius 2. Alternatively, suppose we write the equation
of the ellipse as

x2

4
+
y2

9
= 1

and make the substitution x = 2u and y = 3v. Then u = x
2 and v = y

3 , so if (x, y) is a
point in D, then

u2 + v2 =
x2

4
+
y2

9
≤ 1.

That is, if (x, y) is a point in D, then (u, v) is a point in the unit disk

E = {(u, v) : u2 + v2 ≤ 1}.

Conversely, if (u, v) is a point in E, then

x2

4
+
y2

9
=

4u2

4
+

9v2

9
= u2 + v2 ≤ 1,

1 Copyright c© by Dan Sloughter 2001
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Figure 3.7.1 F maps E onto D

so (x, y) is a point in D. Thus the function F (u, v) = (2u, 3v) takes the region E, a
closed disk of radius 1, and stretches it onto the region D (as shown in Figure 3.7.1).
However, note that even though every point in E corresponds to exactly one point in D,
and, conversely, every point in D corresponds to exactly on point in E, nevertheless E and
D do not have the same area. To see how F changes area, consider what it does to the
unit square S with sides e1 = (1, 0) and e2 = (0, 1). The area of S is 1, but F maps S
onto a rectangle R with sides

F (1, 0) = (2, 0)

and
F (0, 1) = (0, 3)

and area 6. This a special case of a general fact we saw in Section 1.6: the linear function
F , with associated matrix

M =
[

2 0
0 3

]
,

maps the unit square S onto a parallelogram R with area

|det(M)| = 6.

The important fact for us here is that 1 unit of area in the uv-plane corresponds to 6 units
of area in the xy-plane. Hence the area of D will be 6 times the area of E. That is,∫ ∫

D

dxdy =
∫ ∫

E

|det(M)|dudv =
∫ ∫

E

6dudv = 6
∫ ∫

E

dudv = 6π,

where the final integral is simply the area inside a circle of radius 1.
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Figure 3.7.2 The ellipsoid x2

4 + y2

16 + z2

9 = 1

These ideas provide the background for a proof of the following theorem.

Theorem Suppose f : Rn → R is continuous on a an open set U containing the closed
bounded set D. Suppose F : Rn → Rn is a linear function, M is an n×n matrix such that
F (u) = Mu, and det(M) 6= 0. If F maps the region E onto the region D and we define
the change of variables 

x1

x2
...
xn

 = M


u1

u2
...
un

 ,
then∫ ∫

· · ·
∫
D

f(x1,x2, . . . , xn)dx1dx2 · · · dxn

=
∫ ∫

· · ·
∫
E

f(F (u1, u2, . . . , un))|det(M)|du1du2 · · · dun.
(3.7.1)

Example Let D be the region in R3 bounded by the ellipsoid with equation

x2

4
+
y2

16
+
z2

9
= 1.

See Figure 3.7.2. If we make the change of variables x = 2u, y = 4v, and z = 3w, that is,xy
z

 =

 2 0 0
0 4 0
0 0 3

 uv
w

 ,
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then, for any (x, y, z) in D, we have

u2 + v2 + w2 =
x2

4
+
y2

16
+
z2

9
≤ 1.

That is, if (x, y, z) lies in D, then the corresponding (u, v, w) lies in the closed unit ball
E = B̄3((0, 0, 0), 1). Conversely, if (u, v, w) lies in E, then

x2

4
+
y2

16
+
z2

9
=

4u2

4
+

16v2

16
+

9w2

9
= u2 + v2 + w2 ≤ 1,

so (x, y, z) lies in D. Hence, the change of variables F (u, v, w) = (2u, 4v, 3w) maps E onto
D. Now

det

 2 0 0
0 4 0
0 0 3

 = 24,

so if V is the volume of D, then

V =
∫ ∫ ∫

D

dxdydz =
∫ ∫ ∫

E

24dudvdw = 24
∫ ∫ ∫

E

dudvdw = 24
(

4π
3

)
= 32π,

where we have used the fact that the volume of a sphere of radius 1 is 4π
3 to evaluate the

final integral.

Nonlinear change of variables
Without going into the technical details, we will indicate how to proceed when the change
of variables is not linear. Suppose f : Rn → R is continuous on a an open set U containing
the closed bounded set D and F : Rn → Rn maps a closed bounded region E of Rn
onto D so that every point of D corresponds to exactly one point of E. Writing F (u) =
(F1(u), F2(u), . . . , Fn(u)), we will assume that F1, F2, . . . , and Fn are all differentiable
on an open set W containing E. Although we will not study this type of function until
Chapter 4, the natural candidate for the derivative of F is the matrix whose ith row is
∇Fi(u). Letting xi = Fi(u1, u2, . . . , un), i = 1, 2, . . . , n, we denote this matrix, called the
Jacobian matrix of F ,

∂(x1, x2, . . . , xn)
∂(u1, u2, . . . , un)

. (3.7.2)

Explicitly,

∂(x1, x2, . . . , xn)
∂(u1, u2, . . . , un)

=



∂

∂u1
F1(u)

∂

∂u2
F1(u) · · · ∂

∂un
F1(u)

∂

∂u1
F2(u)

∂

∂u2
F2(u) · · · ∂

∂un
F2(u)

...
...

. . .
...

∂

∂u1
Fn(u)

∂

∂u2
Fn(u) · · · ∂

∂un
Fn(u)


. (3.7.3)
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Figure 3.7.3 Polar and Cartesian coordinates for a point P

We shall see in Chapter 4 that
∂(x1, x2, . . . , xn)
∂(u1, u2, . . . , un)

is the matrix for the linear part of the best affine approximation to F at (u1, u2, . . . , un).
Hence, for sufficiently small rectangles, the factor by which F changes the area of a rect-
angle when it maps it to a region will be approximately∣∣∣∣det

∂(x1, x2, . . . , xn)
∂(u1, u2, . . . , un)

∣∣∣∣ . (3.7.4)

One may then show that, analogous to (3.7.1), we have∫
· · ·
∫ ∫

D

f(x1, x2, . . . , xn)dx1dx2 · · · dxn

=
∫
· · ·
∫ ∫

E

f(F (u1, u2, . . . , un))
∣∣∣∣det

∂(x1, x2, . . . , xn)
∂(u1, u2, . . . , un)

∣∣∣∣ du1du2 · · · dun.
(3.7.5)

Note that (3.7.5) is just (3.7.1) with the matrix M replaced by the Jacobian of F .
We will now look at two very useful special cases of the preceding result. See Problems

22 and 23 for a third special case.

Polar coordinates
As an alternative to describing the location of a point P in the plane using its Cartesian
coordinates (x, y), we may locate the point using r, the distance from P to the origin, and
θ, the angle between the vector from (0, 0) to P and the positive x-axis, measured in the
counterclockwise direction from 0 to 2π (see Figure 3.7.3). That is, if P has Cartesian
coordinates (x, y), with x 6= 0, we may define its polar coordinates (r, θ) by specifying that

r =
√
x2 + y2 (3.7.6)
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and
tan(θ) =

y

x
, (3.7.7)

where we take 0 ≤ θ ≤ π if y ≥ 0 and π < θ < 2π if y < 0. If x = 0, we let θ = π
2 if

y > 0 and θ = 3π
2 if y < 0. For (x, y) = (0, 0), r = 0 and θ could have any value, and so is

undefined. Conversely, if a point P has polar coordinates (r, θ), then

x = r cos(θ) (3.7.8)

and
y = r sin(θ). (3.7.9)

Note that the choice of the interval [0, 2π) for the values of θ is not unique, with any
interval of length 2π working as well. Although [0, 2π) is the most common choice for
values of θ, it is sometimes useful to use (−π, π) instead.

Example If a point P has Cartesian coordinates (−1, 1), then its polar coordinates are(√
2, 3π

4

)
.

Example A point with polar coordinates
(
3, π6

)
has Cartesian coordinates

(
3
√

3
2 , 3

2

)
.

In our current context, we want to think of the polar coordinate mapping

(x, y) = F (r, θ) = (r cos(θ), r sin(θ)) (3.7.10)

as a change of variables between the rθ-plane and the xy-plane. This mapping is particu-
larly useful for us because it maps rectangular regions in the rθ-plane onto circular regions
in the xy-plane. For example, for any a > 0, F maps the rectangular region

E = {(r, θ) : 0 ≤ r ≤ a, 0 ≤ θ < 2π}

in the rθ-plane onto the closed disk

D = B̄2((0, 0), a) = {(x, y) : x2 + y2 ≤ a}

in the xy-plane (see Figure 3.7.5 below for an example). More generally, for any 0 ≤ α <
β < 2π, F maps the rectangular region

E = {(r, θ) : 0 ≤ r ≤ a, α ≤ θ < β}

in the rθ-plane onto a region D in the xy-plane which is the sector of the closed disk
B̄2((0, 0), a) which lies between radii of angles α and β (see Figure 3.7.4). Another basic
example is an annulus: for any 0 < a < b, F maps the rectangular region

E = {(r, θ) : a ≤ r ≤ b, 0 ≤ θ < 2π}

in the rθ-plane onto the annulus

D = {(x, y) : a ≤ x2 + y2 ≤ b}

in the xy-plane. Figure 3.7.6 illustrates this mapping for the upper half of an annulus.
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Figure 3.7.4 Polar coordinate change of variables

Example Let V be the volume of the region which lies beneath the paraboloid with
equation z = 4− x2 − y2 and above the xy-plane. In Section 3.6, we saw that

V =
∫ ∫

D

(4− x2 − y2)dxdy = 8π,

where
D = {(x, y) : x2 + y2 ≤ 4}.

The use of polar coordinates greatly simplifies the evaluation of this integral. With the
polar coordinate change of variables

x = r cos(θ)

and
y = r sin(θ),

the closed disk D in the xy-plane corresponds to the closed rectangle

E = {(r, θ) : 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π}

in the rθ-plane (see Figure 3.7.5). Note that in describing E we have allowed θ = 2π,
but this has no affect on our outcome since a line has no area in R2. Moreover, if we let
f(x, y) = 4− x2 − y2, then

f(F (r, θ)) = f(r cos(θ), r sin(θ))

= 4− r2 cos2(θ)− r2 sin(θ)

= 4− r2(cos2(θ) + sin2(θ)

= 4− r2,
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Figure 3.7.5 Polar coordinate change of variables maps [0, 2]× [0, 2π] to B̄2((0, 0), 2)

which also follows from the fact that r2 = x2 + y2. Now

∂(x, y)
∂(r, θ)

=

 ∂

∂r
r cos(θ)

∂

∂θ
r cos(θ)

∂

∂r
r sin(θ)

∂

∂θ
r sin(θ)

 =
[

cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]
, (3.7.11)

so

det
∂(x, y)
∂(r, θ)

= r cos2(θ) + r sin2(θ) = r(cos2(θ) + sin2(θ)) = r. (3.7.12)

Hence, using (3.7.5), we have∫ ∫
D

(4− x2 − y2)dxdy =
∫ ∫

E

(4− r2)
∣∣∣∣det

∂(x, y)
∂(r, θ)

∣∣∣∣ drdθ
=
∫ 2

0

∫ 2π

0

(4− r2)rdθdr

=
∫ 2

0

2π(4r − r3)dr

= 2π
(

2r2 − r4

4

) ∣∣∣∣2
0

= 2π(8− 4)
= 8π.

Example SupposeD is the part of the region between the circles with equations x2+y2 =
1 and x2 + y2 = 9 which lies above the x-axis. That is,

D = {(x, y) : 1 ≤ x2 + y2 ≤ 9, x ≥ 0}.
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Figure 3.7.6 Polar coordinates map [1, 3]× [0, π] to top half of an annulus

We wish to evaluate ∫ ∫
D

e−(x2+y2)dxdy.

Under the polar coordinate change of variables

x = r cos(θ)

and
y = r sin(θ),

the annular region D corresponds to the closed rectangle

E = {(r, θ) : 1 ≤ r ≤ 3, 0 ≤ θ ≤ π},

as illustrated in Figure 3.7.6. Moreover, x2 + y2 = r2 and, as we saw in the previous
example, ∣∣∣∣det

∂(x, y)
∂(r, θ)

∣∣∣∣ = r.

Hence ∫ ∫
D

e−(x2+y2)dxdy =
∫ ∫

E

re−r
2
drdθ

=
∫ 3

1

∫ π

0

re−r
2
dθdr

=
∫ 3

1

πre−r
2
dr

= −π
2
e−r

2
∣∣∣3
1

=
π

2
(e−1 − e−9).

Note that in this case the change of variables not only simplified the region of integra-
tion, but also put the function being integrated into a form to which we could apply the
Fundamental Theorem of Calculus.
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Figure 3.7.7 Spherical and Cartesian coordinates for a point P

Spherical coordinates
Next consider the following extension of polar coordinates to three space: given a point
P with Cartesian coordinates (x, y, z), let ρ be the distance from P to the origin, θ be
the angle coordinate for the polar coordinates of (x, y, 0) (the projection of P onto the
xy-plane), and let ϕ be the angle between the vector from the origin to P and the positive
z-axis, measured from 0 to π. If x 6= 0, we have

ρ =
√
x2 + y2 + z2, (3.7.13)

tan(θ) =
y

x
, (3.7.14)

and
cos(ϕ) =

z√
x2 + y2 + z2

, (3.7.15)

where 0 ≤ θ < 2π and 0 ≤ ϕ ≤ π. As with polar coordinates, if x = 0 we let θ = π
2 if

y > 0, θ = 3π
2 if y < 0, and θ is undefined if y = 0. See Figure 3.7.7. Conversely, given

a point P with spherical coordinates (ρ, θ, ϕ), the projection of P onto the xy-plane will
have polar coordinate r = ρ sin(ϕ). Hence the Cartesian coordinates of P are

x = ρ cos(θ) sin(ϕ), (3.7.16)

y = ρ sin(θ) sin(ϕ), (3.7.17)

and
z = ρ cos(ϕ). (3.7.18)

Example If a point P has Cartesian coordinates (2,−2, 1), then its spherical coordinates
satisfy

ρ =
√

4 + 4 + 1 = 3,
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tan(θ) =
−2
2

= −1,

and
cos(ϕ) =

1√
4 + 4 + 1

=
1
3
.

Hence we have
θ =

7π
4

and

ϕ = cos−1

(
1
3

)
= 1.2310,

where we have rounded the value of ϕ to four decimal places. Hence P has spherical
coordinates

(
3, 7π

4 , 1.2310
)
.

Example If a point P has spherical coordinates
(
4, π3 ,

3π
4

)
, then its Cartesian coordinates

are

x = 4 cos
(π

3

)
sin
(

3π
4

)
= 4

(
1
2

)(
1√
2

)
=
√

2,

y = 4 sin
(π

3

)
sin
(

3π
4

)
= 4

(√
3

2

)(
1√
2

)
=
√

6,

and

z = 4 cos
(

3π
4

)
= 4

(
− 1√

2

)
= −2

√
2.

Analogous to our work with polar coordinates, we think of the spherical coordinate
mapping

(x, y, z) = F (ρ, θ, ϕ) = (ρ cos(θ) sin(ϕ), ρ sin(θ) sin(ϕ), ρ cos(ϕ)) (3.7.19)

as a change of variables between ρθϕ-space and xyz-space. This mapping is particularly
useful for evaluating triple integrals because it maps rectangular regions in ρθϕ-space onto
spherical regions in xyz-space. For the most basic example, for any a > 0, F maps the
rectangular region

E = {(ρ, θ, ϕ) : 0 ≤ ρ ≤ a, 0 ≤ θ < 2π, 0 ≤ ϕ ≤ π}

in ρθϕ-space onto the closed ball

D = B̄3((0, 0, 0), a) = {(x, y, z) : x2 + y2 + z2 ≤ a}

in xyz-space. More generally, for any 0 < a < b, 0 ≤ α < β < 2π, and 0 ≤ γ < δ ≤ π, F
maps the rectangular region

E = {(ρ, θ, ϕ) : a ≤ ρ ≤ b, α ≤ θ < β, γ ≤ ϕ ≤ δ}
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onto a region D in xyz-space which lies between the concentric spheres S2((0, 0, 0), a) and
S2((0, 0, 0), b), and for which the angle θ lies between α and β and the angle ϕ between γ
and δ. For example, if α = 0, β = π, γ = 0, and δ = π

2 , then D is one-half of the region
lying between two concentric hemispheres with radii a and b.

Before using the spherical coordinate change of variable in (3.7.19) to evaluate an
integral using (3.7.5), we need to compute the determinate of the Jacobian of F . Now

∂(x, y, z)
∂(ρ, θ, ϕ)

=



∂

∂ρ
ρ cos(θ) sin(ϕ)

∂

∂θ
ρ cos(θ) sin(ϕ)

∂

∂ϕ
ρ cos(θ) sin(ϕ)

∂

∂ρ
ρ sin(θ) sin(ϕ)

∂

∂θ
ρ sin(θ) sin(ϕ)

∂

∂ϕ
ρ sin(θ) sin(ϕ)

∂

∂ρ
ρ cos(ϕ)

∂

∂θ
ρ cos(ϕ)

∂

∂ϕ
ρ cos(ϕ)



=


cos(θ) sin(ϕ) −ρ sin(θ) sin(ϕ) ρ cos(θ) cos(ϕ)

sin(θ) sin(ϕ) ρ cos(θ) sin(ϕ) ρ sin(θ) cos(ϕ)

cos(ϕ) 0 −ρ sin(ϕ)

 , (3.7.20)

so, expanding along the third row,

det
∂(x, y, z)
∂(ρ, θ, ϕ)

= cos(ϕ)(−ρ2 sin2(θ) sin(ϕ) cos(ϕ)− ρ2 cos2(θ) sin(ϕ) cos(ϕ))

− ρ sin(ϕ)(ρ cos2(θ) sin2(ϕ) + ρ sin2(θ) sin2(ϕ)
= −ρ2 sin(ϕ) cos2(ϕ)(sin2(θ) + cos2(θ))− ρ2 sin3(ϕ)(sin2(θ) + cos2(θ))
= −ρ2 sin(ϕ) cos2(ϕ)− ρ2 sin3(ϕ)
= −ρ2 sin(ϕ)(cos2(ϕ) + sin2(ϕ))
= −ρ2 sin(ϕ). (3.7.21)

Now ρ ≥ 0 and, since 0 ≤ ϕ ≤ π, sin(ϕ) ≥ 0, so∣∣∣∣∂(x, y, z)
∂(ρ, θ, ϕ)

∣∣∣∣ = ρ2 sin(ϕ). (3.7.22)

Example In an earlier example we used the fact that the volume of a sphere of radius 1
is 4π

3 . In this example we will verify that the volume of a sphere of radius a is 4
3πa

3. Let
V be the volume of

D = B̄3((0, 0, 0), a),

the closed ball of radius a centered at the origin in R3. Then

V =
∫ ∫ ∫

D

dxdydz.
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Although we may evaluate this integral using Cartesian coordinates, we will find it sig-
nificantly easier to use spherical coordinates. Using the spherical coordinate change of
variables

x = ρ cos(θ) sin(ϕ),

y = ρ sin(θ) sin(ϕ),

and
z = ρ cos(ϕ),

the region D in xyz-space corresponds to the region

E = {(ρ, θ, ϕ) : 0 ≤ ρ ≤ a, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π}

in ρθϕ-space. Using (3.7.22) in the change of variables formula (3.7.5), we have

V =
∫ ∫ ∫

D

dxdydz

=
∫ ∫ ∫

E

∣∣∣∣det
∂(x, y, z)
∂(ρ, θ, ϕ)

∣∣∣∣ dρdθdϕ
=
∫ 1

0

∫ 2π

0

∫ π

0

ρ2 sin(ϕ)dϕdθdρ

=
∫ a

0

∫ 2π

0

(−ρ2 cos(ϕ))
∣∣π
0
dθdρ

=
∫ a

0

∫ 2π

0

(−ρ2(−1− 1))dθdρ

= 2
∫ a

0

∫ 2π

0

ρ2dθdρ

= 4π
∫ a

0

ρ2dρ

=
4π
3
ρ3
∣∣∣a
0

=
4
3
πa3.

Example Suppose we wish to evaluate∫ ∫ ∫
D

log
√
x2 + y2 + z2 dxdydz,

where D is the region in R3 which lies between the two spheres with equations x2+y2+z2 =
1 and x2 + y2 + z2 = 4 and above the xy-plane. Under the spherical coordinate change of
variables

x = ρ cos(θ) sin(ϕ),
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y = ρ sin(θ) sin(ϕ),

and
z = ρ cos(ϕ),

the region D in xyz-space corresponds to the region

E =
{

(ρ, θ, ϕ) : 1 ≤ ρ ≤ 2, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π

2

}
in ρθϕ-space. Using (3.7.22) in the change of variables formula (3.7.5), we have∫ ∫ ∫

D

log
√
x2 + y2 + z2 dxdydz =

∫ ∫ ∫
E

log(ρ)
∣∣∣∣∂(x, y, z)
∂(ρ, θ, ϕ)

∣∣∣∣ dρdθdϕ
=
∫ 2

1

∫ 2π

0

∫ π
2

0

ρ2 log(ρ) sin(ϕ)dϕdθdρ

=
∫ 2

1

∫ 2π

0

(−ρ2 log(ρ) cos(ϕ))
∣∣π2
0
dθdρ

=
∫ 2

1

∫ 2π

0

(−ρ2 log(ρ))(0− 1)dθdρ

=
∫ 2

1

∫ 2π

0

ρ2 log(ρ)dθdρ

= 2π
∫ 2

1

ρ2 log(ρ)dρ.

We use integration by parts to evaluate this final integral: letting

u = log(ρ) dv = ρ2dρ

du =
1
ρ
dρ v =

ρ3

3
,

we have ∫ ∫ ∫
D

log
√
x2 + y2 + z2 dxdydz = 2π

(
1
3
ρ3 log(ρ)

∣∣∣∣2
1

− 1
3

∫ 2

1

ρ2dρ

)

=
16
3
π log(2)− 2πρ3

9

∣∣∣∣2
1

=
16
3
π log(2)− 14π

9

=
2π
3

(
8 log(2)− 7

3

)
.
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Problems

1. Find the area of the region enclosed by the ellipse with equation x2 + 4y2 = 4.

2. Given a > 0 and b > 0, show that the area enclosed by the ellipse with equation

x2

a2
+
y2

b2
= 1

is πab.

3. Find the volume of the region enclosed by the ellipsoid with equation

x2

25
+ y2 +

z2

4
= 1.

4. Given a > 0, b > 0, and c > 0, show that the volume of the region enclosed by the
ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1

is 4
3πabc.

5. Find the polar coordinates for each of the following points given in Cartesian coordi-
nates.
(a) (1, 1) (b) (−2, 3)
(c) (−1, 3) (d) (4,−4)

6. Find the Cartesian coordinates for each of the following points given in polar coordi-
nates.

(a) (3, 0) (b)
(

2,
5π
6

)
(c) (5, π) (d)

(
4,

4π
3

)
7. Evaluate ∫ ∫

D

(x2 + y2)dxdy,

where D is the disk in R2 of radius 2 centered at the origin.

8. Evaluate ∫ ∫
D

sin(x2 + y2)dxdy,

where D is the disk in R2 of radius 1 centered at the origin.

9. Evaluate ∫ ∫
D

1
x2 + y2

dxdy,

where D is the region in the first quadrant of R2 which lies between the circle with
equation x2 + y2 = 1 and the circle with equation x2 + y2 = 16.
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10. Evaluate ∫ ∫
D

log(x2 + y2)dxdy,

where D is the region in R2 which lies between the circle with equation x2 + y2 = 1
and the circle with equation x2 + y2 = 4.

11. Using polar coordinates, verify that the area of a circle of radius r is πr2.

12. Let

I =
∫ ∞
−∞

e−
x2
2 dx.

(a) Show that

I2 =
∫ ∞
−∞

∫ ∞
−∞

e−
1
2 (x2+y2)dxdy.

(b) Show that

I2 =
∫ ∞

0

∫ 2π

0

re−
r2
2 dθdr.

(c) Show that ∫ ∞
−∞

e−
x2
2 dx =

√
2π.

13. Find the spherical coordinates of the point with Cartesian coordinates (−1, 1, 2).

14. Find the spherical coordinates of the point with Cartesian coordinates (3, 2,−1).

15. Find the Cartesian coordinates of the point with spherical coordinates
(
2, 3π

4 ,
2π
3

)
.

16. Find the Cartesian coordinates of the point with spherical coordinates
(
5, 5π

3 ,
π
6

)
.

17. Evaluate ∫ ∫ ∫
(x2 + y2 + z2)dxdydz,

where D is the closed ball in R3 of radius 2 centered at the origin.

18. Evaluate ∫ ∫ ∫
D

1√
x2 + y2 + z2

dxdydz,

where D is the region in R3 between the two spheres with equations x2 + y2 + z2 = 4
and x2 + y2 + z2 = 9.

19. Evaluate ∫ ∫ ∫
D

sin(
√
x2 + y2 + z2 )dxdydz,

where D is the region in R3 described by x ≥ 0, y ≥ 0, z ≥ 0, and x2 + y2 + z2 ≤ 1.
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20. Evaluate ∫ ∫ ∫
D

e−(x2+y2+z2)dxdydz,

where D is the closed ball in R3 of radius 3 centered at the origin.

21. Let D be the region in R3 described by x2 + y2 + z2 ≤ 1 and z ≥
√
x2 + y2.

(a) Explain why the spherical coordinate change of variables maps the region

E =
{

(ρ, θ, ϕ) : 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π

4

}
onto D.

(b) Find the volume of D.

22. If a point P has Cartesian coordinates (x, y, z), then the cylindrical coordinates of P
are (r, θ, z), where r and θ are the polar coordinates of (x, y). Show that∣∣∣∣det

∂(x, y, z)
∂(r, θ, z)

∣∣∣∣ = r.

23. Use cylindrical coordinates to evaluate∫ ∫
D

√
x2 + y2dxdydz,

where D is the region in R3 described by 1 ≤ x2 + y2 ≤ 4 and 0 ≤ z ≤ 5.

24. A drill with a bit with a radius of 1 centimeter is used to drill a hole through the center
of a solid ball of radius 3 centimeters. What is the volume of the remaining solid?

25. Let D be the set of all points in the intersection of the two solid cylinders in R3

described by x2 + y2 ≤ 1 and x2 + z2 ≤ 1. Find the volume of D.


